Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Drought, salinity and cold are the major environmental factors impacting on survival and productivity of Tibetan hulless barley in Tibetan Plateau of China. Tibetan hulless barley cultivar, Tibetan Heiqingke No. 1, has developed a strong tolerance and adaptation to stresses in relation to the wild barley. The differences of dehydrin gene transcription and translation between Tibetan Heiqingke No. 1 and the wild barley under drought, salinity and low temperature stresses were investigated in the present study to figure out the putative mechanism of stress tolerance of Tibetan Heiqingke No. 1. The leaf relative water contents (RWCs) decreased more slowly in Tibetan hulless barley than the wild barley under osmotic and low temperature conditions. Electrolyte leakage, malondialdehyde and H₂O₂ contents increased faster in wild barley than those of Tibetan hulless barley, which indicated that cells of wild barley received more damages than Tibetan hulless barley. Furthermore, the expression of several dehydrin genes, belonging to four different classifications respectively, was also investigated. Polyclonal antibodies against dehydrins were obtained from rabbit after prokaryotic expression and purification of TDHN4, a dehydrin protein from Tibetan hulless barley. With these antibodies and dehydrin gene fragments, western blotting analysis and RT-PCR showed that Tibetan Heiqingke No. 1 accumulated higher abundance of dehydrins than stresssensitive wild barley under all stress conditions.
EN
In plants, cadmium (Cd) is regarded as one of the most toxic metals and affects many physiological and biochemical processes. To investigate the effects of Cd on photosynthesis and antioxidant system of japonica and indica rice cultivars, Wuyu 21 (WY21) and IIyou 808 (IIY808) seedlings were exposed to different concentrations of Cd for 7 days. Our results indicated that Cd treatments resulted in the significant decrease in photosynthetic capacity and the obvious oxidative damage in WY21 and IIY808. Although Cd contents in the leaves and stem had no obvious difference between WY21 and IIY808 under Cd stress, japonica cultivar WY21 showed higher Cd contents of roots and photosynthetic efficiency compared with indica cultivar IIY808 under Cd stress. In contrast, the lower generation of reactive oxygen species (ROS) and cell death were observed in WY21 relative to IIY808. However, almost all antioxidant enzymes activities and the concentrations of four antioxidants showed no significant differences between WY21 and IIY808. Furthermore, the severe oxidative damage in IIY808 was accompanied by the marked decline in the levels of two photosystem II (PSII) proteins (D2 and D1) under high concentration of Cd. In conclusion, we concluded that high Cd resistance in japonica cultivar WY21 is probably attributed to the high photosynthesis under Cd stress.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.