Purpose: In the process of laying on the bottom of the sea material of the pipeline undergoes single-cycle alternating load. The purpose of the work is to determine the effect of pre-operational loads on the resource of marine pipelines. Design/methodology/approach: The influence of the method of construction of pipelines on their stress-strain state is analysed. According to the real modes of packing of sea pipelines, the loading regime is programmed and the laboratory modelling of the pipelaying process by the S-method has been programmed. Findings: According to the results of one-cycle shift load were obtained characteristics of the hysteresis loop. It is proposed to simplify the mathematical description of the hysteresis loop of the pipeline laying cycle in the given form. It was shown that the preload during the construction process negatively affects the durability of the pipeline material due to the exhaustion of its plasticity resource, reducing it to 70%. Research limitations/implications: In the future, investigations into the effect of overloading and overloading during the repair of pipeline sections on their durability and on the safe exploitation of resources should be continued. Practical implications: The developed method of estimation of influence of preoperational loads in the process of pipeline laying on its safe exploitation resource is used in gas-extraction enterprises. Originality/value: To forecast the deformation behaviour of the pipeline material in the laying cycle, it is efficient to use diagrams of a sign-changing single-cycle bend, which were built considering the creep. The fatigue life capability of a steel pipeline depends on the history of the pipeline load in the laying cycle. Ratio σ*0.2c / σ* 0.2t and εyc / ε yt can use as power and deformation criteria for evaluating Bauschinger effect. It is suggested that fatigue damage is determined by the width of the hysteresis loop.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The presented paper is mainly aimed at estimating the residual lifetime of metal used for the offshore gas pipeline under a low amplitude cyclic load applying S- and J-methods for pipelaying. Taking into account the preliminary effect of deformation on the welded joint and the base material of the pipe, the tests on fatigue have been carried out and physical and mechanical regularities in fatigue failure in offshore gas pipeline materials have been established. The obtained results show that the plasticity and embrittlement of the pipe wall employing S- and J-methods for pipelaying do not practically affect the residual lifetime of metal under low amplitude cyclic loading, but rather exert a significant influence within a high amplitude range under the preliminary deformation process that activates the accumulation of fatigue defects and strain aging.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.