To improve the flexibility of the multilevel space vector pulse width modulation (SVPWM), various algorithms have been developed. A theoretical comparison is made for three 2-D SVPWM algorithms: they are g-h frame, α' - β' frame and multilevel SVPWM based on two-level (α* - β* frame). The aim is to provide a guideline for the selection of the most appropriate SVPWM technique for digital implementation. Among them, the α' - β' frame offers the best flexibility with the least calculation and is well suited for digital implementation. The α* - β* frame is the most intuitionistic but has the largest calculation. New general methods of the g-h frame and α' - β' frame for any level SVPWM are also provided, which needs only the angle θ and the modulation depth m to generate and arrange the final vector sequence. All three methods are implemented in a field programmable gate array (FPGA) with very high speed integrated circuit hardware description language (VHDL) and compared in terms of implementation complexity and logic resources required. Simulation results show the absolute advantages of α' - β' frame in briefness and resources use. Finally, an experimental test result is presented with a three-level neutral-point-clamped (NPC) inverter.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.