Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present study was carried out to determine interactive and comparative effects of salinity and water stress on growth, proline accumulation, chlorophyll, carotenoid and macro nutrient content and antioxidative enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POX), and polyphenol oxidase (PPO) in hydroponically grown maize (Zea mays L.cv DKC647) plants. Plants were treated two salt (NaCl) concentrations and polyethylene glycol 6000 (PEG 6000) to create water stress. The results obtained from this experiment show that high salinity reduced growth through decreasing shoot and root dry and fresh weight, chlorophyll, and carotenoid content, but PEG treatment had no significant effect on this parameters. Under NaCl and PEG 6000 treatment, uptake and translocation of mineral nutrients changed drastically. The high presence of Na⁺ in nutrient solution affected considerably the plant nutritional requirement, especially influencing the uptake of Ca²⁺ and K⁺, which were restricted for competition. Proline accumulation, and SOD, POX and PPO activities were increased with the increasing intensity of NaCl stress, but PEG 6000 treatment in addition to NaCl had more significant effect on this enzyme activities. These results suggest that maize plants may be increased proline content to maintain osmotic adjustment and increased the activity of antioxidant enzymes to have a better protection against active oxygen species (AOS) under salt and water stress.
EN
The combination effects of water stress and gibberellic acid (GA₃) on physiological attributes and nutritional status of maize (Zea mays L. cv., DK 647 FI ) were studied in a pot experiment. Maize plants were grown in the control (well watered WW) and water stress subj ected to treated both water stress and two concentrations of gibberellic acid (GA₃ 25 mg·L⁻¹,50 mg·L⁻¹). WS was imposed by maintaining the moisture level equivalent to 50 % pot capacity whereas the WW pots were maintained at full pot capacity. Water stress reduced the total dry weight, chlorophyll concentration, and leaf relative water content (RWC), but it increased proline accumulation and electrolyte leakage in maize plants and appears to affect shoots more than roots. Both concentrations of GA₃ (25 and 50 mg·L⁻¹) largely enhanced the above physiological parameters to levels similar to control. WS reduced leaf Ca2+ and K+ concentrations, but exogenous application of GA₃ int creased those nutrient levels similar or close to control. Exogenous application of GA₃ improved the water stress tolerance in maize plants by maintaining membrane permeability, enhancing chlorophyll concentration, leaf relative water content (LRWC) and some macro-nutrient concentrations in leaves.
EN
The effects of thiamin (Thi) applied as seed soaking or foliar spray on some key physiological parameters were investigated in two differentially saltresponsive maize (Zea mays L.) cultivars, DK 5783 and Apex 836 F1, exposed to saline stress in two different experiments. An initial experiment (germination experiment) was designed to identify appropriate doses of Thi which could lessen the deleterious effects of salt on plants and screen all available maize cultivars for their differential tolerance to salt stress (100 mM NaCl). The seeds of nine maize cultivars were soaked for 24 h in solutions containing six levels of Thi (25, 50, 75, 100, 125 and 150 mg l-1). Based on the results obtained from the germination experiment, maize cultivar DK 5783 was found to be the most salt tolerant and Apex 836 as the most sensitive cultivar. Also, of six Thi levels used, two levels (100 and 125 mg l-1) were chosen for subsequent studies. In the second experiment (glasshouse experiment), two maize cultivars, DK 5783 (salt tolerant) and Apex 836 (salt sensitive) were subjected to saline regime (100 mM NaCl) and two levels of Thi (100 and 125 mg l-1) applied as foliar spray. Salt stress markedly suppressed shoot and root dry mass, total chlorophylls (‘‘a’’ ? ‘‘b’’), leaf water potential and maximum fluorescence yield (Fv/Fm) in the plants of both maize cultivars, but it increased proline accumulation, leaf osmotic pressure, malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations, electrolyte leakage (EL) as well as activities of some key antioxidant enzymes, superoxide dismutase (SOD; EC. 1.15.1.1), peroxidase (POD; EC. 1.11.1.7) and catalase (CAT; EC. 1.11.1.6). Salt-induced reduction in plant growth parameters was higher in the salt-sensitive cultivar, Apex 836, which was found to be associated with relatively increased EL, and MDA and H2O2 levels, and decreased activities of the key antioxidant enzymes. Application of Thi as seed soaking or foliar spray partly mitigated the deleterious effects of salinity on plants of both maize cultivars. The most promising effect of Thi on alleviation of adverse effects of salt stress on maize plants was found when it was applied as foliar spray at 100 mg l-1. Thiamin application considerably reduced tissue Na? concentration, but improved those of N, P, Ca2? and K? in the salt-stressed maize plants. Exogenously applied thiamin-induced growth improvement in maize plants was found to be associated with reduced membrane permeability, MDA and H2O2 levels, and altered activities of some key antioxidant enzymes such as CAT, SOD and POD as well as increased photosynthetic pigment concentration under saline regime.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.