Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.
The effects of four different kinds of nanoparticles (NPs), namely, CuO, ZnO, TiO2, and Au, of the sizes ranging from <20 nm to 50 nm on Daphnia magna, early life stage of zebrafish, and various enzymes have been investigated. The experimental results showed that the NPs inhibited both the body length and hatching rate of zebrafish larvae; the small nanoparticles exhibited more toxicity. In a 21 day chronic toxicity test, metal ions of higher concentrations significantly reduced the number of Daphnia magna offspring. Studies on enzyme activity showed that the NPs reduced the glutathione content and inhibited catalase and superoxide dismutase activities, resulting in shorter body length, lower hatching success, and lower reproduction of zebrafish larvae. Therefore, studies should focus more on the potential toxicity of smaller NPs.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.