In recent years, Indonesia has placed great attention on the use of renewable energy resources as a way to decrease gas emission. Located at the equator, Indonesia has many advantages in renewable energy resources, especially photovoltaic (PV). Photovoltaic offers a big opportunity to contribute to the power grid, yet it also comes with its challenges. The use of PV involves a major uncertainty as the inputs of PV are weather conditions that are constantly changing. With Indonesia planning to penetrate the PV farm into the power grid, it is necessary to be able to generate an accurate forecast to assist the power grid control operator. Many algorithms are applied to obtain a precise and accurate PV power generation. One of the algorithms generally used by researchers is the conventional back propagation neural network. It is one of the most commonly applied algorithms, yet it also has a complex setting and numerous parameters. To help overcome this issue, extreme learning machine (ELM) is applied alongside with backpropagation neural network (BPNN), resulting in a more promising result. However, the random value for ELM parameters has become another problem of its own. This paper discusses an advanced ELM to obtain a better PV forecast result. The combination of PV input, ambient temperature, global tilted irradiation (GTI), wind direction, wind velocity and humidity are applied on the kernel extreme learning machine (K-ELM). We found that K-ELM proposes a better performance compared to ELM in facing a nonlinear data, along with better learning capability, mapping ability, and an improved efficiency. We also developed the input data using BPNN, ELM and support vector machine (SVM) to compare training, testing and calculation time
PL
W ostatnich latach Indonezja przywiązywała dużą wagę do wykorzystania odnawialnych źródeł energii jako sposobu na zmniejszenie emisji gazów. Położona na równiku Indonezja ma wiele zalet w zakresie odnawialnych źródeł energii, zwłaszcza fotowoltaiki (PV). Fotowoltaika daje duże możliwości wniesienia wkładu w sieć energetyczną, ale wiąże się również z wyzwaniami. Korzystanie z PV wiąże się z dużą niepewnością, ponieważ wejścia PV to stale zmieniające się warunki pogodowe. Ponieważ Indonezja planuje penetrację farmy fotowoltaicznej do sieci energetycznej, konieczne jest wygenerowanie dokładnej prognozy, aby pomóc operatorowi kontroli sieci energetycznej. W celu uzyskania precyzyjnego i dokładnego wytwarzania energii PV stosuje się wiele algorytmów. Jednym z algorytmów powszechnie stosowanych przez badaczy jest konwencjonalna sieć neuronowa wstecznej propagacji. Jest to jeden z najpowszechniej stosowanych algorytmów, ale ma też złożoną nastawę i liczne parametry. Aby rozwiązać ten problem, zastosowano ekstremalną maszynę uczącą (ELM) wraz z siecią neuronową z propagacją wsteczną (BPNN), co daje bardziej obiecujący wynik. Jednak losowa wartość parametrów ELM stała się kolejnym problemem. W niniejszym artykule omówiono zaawansowane ELM w celu uzyskania lepszego wyniku prognozy PV. Kombinacja sygnału wejściowego PV, temperatury otoczenia, napromieniowania globalnego odchylenia (GTI), kierunku wiatru, prędkości wiatru i wilgotności jest stosowana na maszynie ekstremalnego uczenia jądra (K-ELM). Odkryliśmy, że K-ELM proponuje lepszą wydajność w porównaniu do ELM w obliczu danych nieliniowych, a także lepszą zdolność uczenia się, zdolność mapowania i lepszą wydajność. Opracowaliśmy również dane wejściowe za pomocą BPNN, ELM i maszyny wektorów nośnych (SVM) w celu porównania czasu szkolenia, testowania i obliczeń.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.