Let P = (Pt)t≥0 be a sub-Markovian semigroup on L2(m), let β = (βt)t≥0 be a Bochner subordinator and let Pβ = (Pβ(t ))t≥0 be the subordinated semigroup of P by means of β, i.e. Pβ(s):= ∫∞(0) Pr βs(dr). Let φ:= (φt)t>0 be a P-exit law, i.e. Ptφs = φs+t, s,t>0 and let φβ(t):= ∫∞(0)φs βt(ds). Then φβ:= (φβ(t)t>0 is a Pβ-exit law whenever it lies in L2(m). This paper is devoted to the converse problem when β is without drift. We prove that a Pβ-exit law ψ:= (ψt)t>0 is subordinated to a (unique) P-exit law φ (i.e. ψ= φ β) if and only if (Ptu)t>0 ⊂ D(Aβ), where u = ∫∞(0)e-s ψ sds and Aβ, is the L2(m)-generator of Pβ.
Let (Θ, φ) be a continuous random dynamical system defined on a probability space (Ω, F, P) and taking values on a locally compact Hausdorff space E. The associated potential kernel V is given by [formula]. In this paper, we prove the equivalence of the following statements: 1. The potential kernel of (Θ, φ) is proper, i.e. V ƒ is x-continuous for each bounded, x-continuous function with uniformly random compact support. 2. (Θ, φ) has a global Lyapunov function, i.e. a function L : Ω x E → (0, ∞) which is x-continuous and L,(Θ tω, φ(t, ω)x) ↓0 as t ↑ ∞. In particular, we provide a constructive method for global Lyapunov functions for gradient-like random dynamical systems. This result generalizes an analogous theorem known for deterministic dynamical systems.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.