Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Rational points on the unit sphere
100%
|
|
tom 6
|
nr 3
482-487
EN
It is known that the unit sphere, centered at the origin in ℝn, has a dense set of points with rational coordinates. We give an elementary proof of this fact that includes explicit bounds on the complexity of the coordinates: for every point ν on the unit sphere in ℝn, and every ν > 0; there is a point r = (r 1; r 2;…;r n) such that: ⊎ ‖r-v‖∞ < ε.⊎ r is also a point on the unit sphere; Σ r i 2 = 1.⊎ r has rational coordinates; $$ r_i = \frac{{a_i }} {{b_i }} $$ for some integers a i, b i.⊎ for all $$ i,0 \leqslant \left| {a_i } \right| \leqslant b_i \leqslant (\frac{{32^{1/2} \left\lceil {log_2 n} \right\rceil }} {\varepsilon })^{2\left\lceil {log_2 n} \right\rceil } $$ . One consequence of this result is a relatively simple and quantitative proof of the fact that the rational orthogonal group O(n;ℚ) is dense in O(n;ℝ) with the topology induced by Frobenius’ matrix norm. Unitary matrices in U(n;ℂ) can likewise be approximated by matrices in U(n;ℚ(i))
2
Content available remote Carmichael's lambda function
38%
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.