Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The combined effects of thermal radiation flux, thermal conductivity, Reynolds number and non-Darcian (Forcheimmer drag and Brinkman boundary resistance) body forces on steady laminar boundary layer flow along a vertical surface in an idealized geological porous medium are investigated. The classical Rosseland one-dimensional diffusion approximation is implemented in the energy equation to avoid solving the general integro-differential equation for radiative transfer. Pseudo-similarity transformations are invoked and the resulting highly coupled and non-linear set of ordinary differential equations for momentum and energy equations are solved numerically using a well-tested and highly accurate shooting Runge-Kutta quadrature with a Merson-Gill algorithm. It is shown that the dimensionless velocity functions generally increase with rising radiation parameter and the Prandtl number, and the dimensionless temperature functions decrease as the non-Darcian body forces decrease. It is also shown that the dimensionless temperature functions rise in magnitude with rising radiation parameter and the Prandtl number but are depressed by lowered non-Darcian resistance parameter and rising Reynolds number. Generally radiation is seen to substantially boost the overall heat transfer.
EN
This paper is focused on the study of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium by taking into account of the Soret/Dufour effects. The boundary layer equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller–Box finite-difference scheme. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters, namely the buoyancy ratio parameter, Prandtl number, Forchheimer number, magnetohydrodynamic body force parameter, Soret and Dufour numbers. The dependency of the thermophysical properties has been discussed on the parameters and shown graphically. Increasing the Forchheimer inertial drag parameter reduces velocity but elevates temperature and concentration. Increasing the Soret number and simultaneously reducing the Dufour number greatly boosts the local heat transfer rate at the cylinder surface. A comparative study of the previously published and present results in a limiting sense is made and an excellent agreement is found between the results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.