We force from large cardinals a model of ZFC in which $ℵ_{ω+1}$ and $ℵ_{ω+2}$ both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model $ℵ_{ω+2}$ even satisfies the super tree property.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We investigate some natural combinatorial principles related to the notion of mild ineffability, and use them to obtain new characterizations of mild ineffable and weakly compact cardinals. We also show that one of these principles may be satisfied by a successor cardinal. Finally, we establish a version for $𝓟_{κ}(λ)$ of the canonical Ramsey theorem for pairs.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.