This paper is focused on the theoretical study of heat conduction in the multi-brake system of the automated guided vehicle (AGV). The study aims to compare the amount of heat generated during braking from 10 m/s until a stop in a brake system based on organic and ceramic friction material. The theoretical study of heat conduction is solved in Matlab computational software using a derived Fourier partial differential equation for nonstationary heat conduction. The results of the simulation of the heat conduction are shown in the diagrams and indicate not only the temperature dependence in the period during braking from a speed of 10 m/s to a stop but also the amount of heat accumulated in the steel disc during braking. The simulation results show that braking in both brake systems generates approximately the same amount of heat. The difference occurs in the period of thermal activity, which was influenced by the length of the braking distance. This is caused by a coefficient of friction that significantly affects the final braking result. Finally, it can be stated that the brake system based on organic material must be equipped with a steel disc with a minimum thickness of 8 mm. This is because the brake system based on organic friction material has a set temperature limit of 160 degrees Celsius. The results presented in this study will help an engineer constructor to choose the right procedures and parameters of geometry for designing the mentioned braking system for the considered AGV.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.