The use of the Automatic Identification System (AIS) devices for ensuring the safety of navigation and the errors occurring when using AIS equipment have been the focus of a number of research studies. The users of AIS equipment installed onboard sea-going vessels are required to familiar with the proper use of the devices and potential errors that may occur. A significant problem revealed in this study is the lack of understanding of potential error sources and the necessity to eliminate such errors prior to transmission of the AIS data message reading of the errors and failure to update the data processed by the AIS system. This results in a hypothesis on the insufficient training of seafarers and their familiarisation with the AIS devices and errors. This research is aimed at increasing the safety of navigation in the Adriatic Sea, as well as other seas, i.e. better accident prevention and protection of human life and material property at sea. The results produced by the research are used as an input for creating a model for enhancing the safety of navigation when using the AIS, through additional training of the seafarers.
From the aspect of navigational safety and collision avoidance it is very important to be able to detect small maritime targets such as buoys and small boats. Ship's radar is supposed to detect these types of targets, however the ability of radar to detect such targets depends on several factors. The most important factors affecting the detection probability of small maritime targets are height of the antenna installation on the ship and radar cross section of the target. The methods of computation radar cross section are diverse and complicated, however, in this paper we apply our previously published numerical method for the RCS computation which had proven to be very accurate. Physically to find RCS of the target one has to find the solution of electromagnetic scattering problem. The numerical method relies on the combination of finite edge volume elements and finite edge boundary elements to obtain the solution of Maxwell equations. The radiation pattern of ships radar antenna is the source of excitation for the numerical method. At the end of the paper the RCS of small maritime targets as the function of antenna height is shown. These results can be used as a parameter in radar design, as well as the guideline for the height of installation of the ship's radar antenna above the sea.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.