We study strongly exposed points in general Kothe-Bochner Banach spaces X(E). We first give a characterization of strongly exposed points of the set of X-selections of a measurable multifunction [Gamma]. We then apply this result to the study of strongly exposed points of the closed unit ball of X(E). Precisely we show that if an element f is a strongly exposed point of B_X(E), then |f| is a strongly exposed point of B_x and f(omega)/||f(omega)[| is a strongly exposed point of B_E for [my]-almost all [omega is an element of S(f)].
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.