W artykule scharakteryzowano dotychczasowe etapy rozwoju technologicznego w ciepłownictwie oraz przedstawiono kluczowe założenia do nowych systemów ciepłowniczych, tzw. systemów czwartej generacji. W artykule odniesiono się również do problematyki obniżania temperatury nośnika ciepła w sieciach ciepłowniczych, czy wykorzystania niskotemperaturowych sieci ciepłowniczych, z punktu widzenia możliwych korzyści, jak również koniecznych do rozwiązania problemów technologicznych. W artykule stwierdzono ponadto, że ewolucja obecnych systemów ciepłowniczych do standardu czwartej generacji pozwala na: zwiększenie udziału odnawialnych źródeł energii i ciepła odpadowego, zwiększenie stabilności cen ciepła oraz wzrostu bezpieczeństwa dostaw ciepła w wyniku wzrostu udziału w procesach konwersji energii lokalnie dostępnych nośników energii pierwotnej. W artykule wskazano, że niskotemperaturowe ciepłownictwo komunalne jest postrzegane jako wschodząca innowacyjna technologia systemowa o dużym potencjale zastąpienia obecnych technologii w tym sektorze.
EN
The paper outlines the characteristics of the stages of technological development of district heating systems to this day and age, highlighting the key concepts that the state-of-the-art fourth-generation district heating systems are based on. It concerns the issues of reducing the temperature in district heating networks, as well as the use of low-temperature district heating networks, showcasing the potential advantages of this solution, in addition to technical challenges to be solved. Upgrading the existing district heating systems to the fourth-generation standard will lead to increasing the number of local renewable energy sources and waste heat recovery systems, which in turn is going to increase the stability of heat prices and improve the safety of heat supply. The paper indicates that low-temperature district heating systems are viewed as an up-and-coming innovative solution with great potential to replace the existing district heating systems.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule przedstawiono badania prototypu akumulatora chłodu wykorzystującego do procesu magazynowania ciepło przemiany fazowej woda-lód. Koncepcja akumulatora chłodu polega na umieszczeniu w walcowym zasobniku o objętości 200 litrów kulistych kapsuł wypełnionych wodą. W badaniach wykorzystano złoża z kapsuł polipropylenowych o średnicach: 80 mm, 70 mm oraz 60 mm. Akumulator chłodu współpracował z pompą ciepła woda-powietrze. Na podstawie uzyskanych wyników badań obliczono: pojemność i moc chłodniczą, sprawność i współczynnik wydajności chłodniczej akumulatora (EER). Stwierdzono, że dla badanego prototypowego akumulatora chłodu maksymalna wartość pojemności chłodniczej wyniesie 17 kWh (85,3 kWh na metr sześcienny złoża). W przypadku EER wartość maksymalna wyniosła 4,93. Maksymalne wartości EER wystąpiły dla akumulatora chłodu z kapsułami o średnicy 70 mm i 80 mm dla strumienia masy mieszanki wodno-glikolowej przepływającej między akumulatorem i pompą ciepła odpowiednio 0,084 kg/s oraz 0,089 kg/s. W trakcie badań nie zaobserwowano istotnych problemów eksploatacyjnych prototypu akumulatora chłodu.
EN
The paper presents the investigation of a prototype cold accumulator using water–ice latent heat for the cold storage process. The concept of the cold accumulator was based on a 200-L-capacity cylindrical storage tank in which spherical capsules filled with water were placed. Beds of polypropylene capsules with diameters of 80 mm, 70 mm, and 60 mm were used in the tests. The cold accumulator operated with a water– air heat pump. Based on the test results, the following parameters were calculated: the cooling capacity, cooling power, energy efficiency of the cold storage, and energy efficiency ratio (EER) of the accumulator. It has been found that, for the prototype cold accumulator under investigation, the maximum values of the cooling capacity (17 kWh or 85.3 kWh per cubic meter of the accumulator) and EER (4.93). The maximum EER values occurred for a cold accumulator with capsules with a diameter of 70mm and 80mm for a mass flow of the water–glycol mixture flowing between the accumulator and the heat pump of 0.084 kg/s and 0.089 kg/s, respectively. During the tests, no significant problems with the operation of the prototype cold accumulator were found.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.