Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
|
|
nr 4
507-518
EN
Background: The article presents the concept of control of the production system, which allows to maintain its stability, and thus to implement the established production plans. For this purpose, combinations of simulation models and artificial neural network (ANN) models of the production system have been suggested. The combination of both types of models was possible thanks to the development of a hybrid model of the expert system to assess the possibility of implementing the production plan (objective) depending on the risk size and the level of stability of the production system analysed. The analysed problem - the possibility of implementing production plans depending on the risk size and the level of stability of the production system - is difficult to mathematical modelling. However, based on the data analysis from the simulation model and the ANN model, we can obtain information on the dependences of the corresponding input and output values. Methods: Based on the presented method of managing the production process using computer models, the possibilities of using simulation models and ANN models in assessing the stability and risk of production systems have been analysed. The analysis and comparison of both types of models have been performed due to the construction and the type of input and output data. Results: The direct combination of simulation models and ANN models is not allowed by their different structure, specificity and other types of input and output data. Therefore, the concept of combination of both types of models presented in the article is conducted via a database of expertise and fuzzy inference. Conclusions: For the purpose of controlling the production system, it was suggested to build a hybrid model of an expert system to assess the possibility of achieving the objective depending on the risk size and the level of stability of the production system.
PL
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem – możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego – jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
PL
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem - możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego - jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
EN
Background: Control plays the main role in ensuring the stability of production processes, while digital models of processes and methods of artificial intelligence are used more and more commonly in it. Production of highly diversified items in small lots at low inventory levels is characterised by a much lower stability as compared with largelot manufacturing. Additionally, innovations created for items or processes result in disturbances to current work. Although this turbulence is usually momentary, it may lead to a loss of function or manufacturing stability, which in turn translates into financial losses, as well as losing customers. This paper presents the potential of using simulation models and artificial neural network models to assess the stability of a reorganized production system. Methods: The problem analysed in the paper is that of merging a simulation model with an ANN model by designing a hybrid model. A direct connection of both types of models is not possible due to their various structures, specificity, and different purposes, as well as the various types of input and output data. Therefore, the idea of merging these two types of models through an expert knowledge base and fuzzy inference was proposed. The results from the simulation model and the ANN model were used to gather the knowledge on the production system being analysed. It has been proposed that the output from the simulation model provided knowledge of the risk level, while the output from the ANN model provided knowledge of process stability. Results: The paper presents the idea of projecting a hybrid model of the expert system in order to assess the stability of a reorganized production system. A model of a hybrid expert system was developed to assess the potential of executing the assumed production plans. The level of risk and the level of stability determined by the simulation model and the ANN model are entered into the system. The output from the expert model is the value of the variable determining the potential of achieving the goal. In the construction of the model, fuzzy inference was used, which uses linguistic variables and is characterized by a knowledge system in the form of fuzzy rules "if ... then ...". For both the independent variable and for the dependent variable, a set of membership functions representing accepted linguistic variables was proposed, and then decision rules were determined. The idea of merging simulation models with ANN models was tested on a practical example in production system that manufactures products for dishwashers. Conclusions: The potentiality to execute production plans depending on the level of risk and the level of stability of the production system is too complicated to be modelled mathematically, but based on the analysis of data from the simulation and ANN models, it is possible to obtain information concerning the relations between corresponding input and output values.
EN
The paper deals with the problem of production material flow management. The proper way of logistic tasks management has an impact on the production process effectiveness and the cycle time, which is a very important factor in manufacturing. Reducing the production process cycle time results not only in the ability to provide more customers with orders but also in increasing the level of resources usage (machines, operators etc.). In order to reach the aim of improving production effectiveness, the simulation modeling was used. It is a computer method that supports a decision-making process and allows to perform experiments on production without interfering with the real process. The paper also includes a risk analysis performed to evaluate the imperfections of simulation modeling, based on the rules of fuzzy logic.
EN
The article presents the application of fuzzy logic to risk assessment in assembly and forming production processes. The fuzzy FMEA method was used, enabling the assessment of risk parameters based on expert opinions. This resulted in the development of a system that allows for greater flexibility and increased resistance to errors associated with human factors, enabling risk assessment through the use of linguistic variables. This allows organisations to analyse and manage risk, improving the efficiency and safety of their operations. This article presents an analysis of the benefits of using fuzzy logic in risk assessment in production in conjunction with the FMEA method, which is one of the most widely used risk assessment methods in industry. It discusses how fuzzy logic can help capture uncertainties in production processes and provide a more flexible framework for their evaluation. A case study is also presented, in which fuzzy logic was applied to risk assessment, highlighting the benefits it brings to production efficiency and safety.
PL
W artykule przedstawiono wyniki badań jakości połączeń taśm przenośnika, co ma znaczący wpływ na ich wytrzymałość. Diagnostyka taśm przenośnikowych z linkami stalowymi przy użyciu metod nieniszczących (NDT) pozwala wykrywać i monitorować uszkodzenia na całej długości taśmy. Taka diagnostyka umożliwia również ocenę jakości połączenia. Testy, oparte na tej metodzie, zostały przeprowadzone z wykorzystaniem systemu diagnostycznego Diagbelt opracowanego na Wydziale Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej. Zaproponowano kilka metod poprawy jakości połączeń w oparciu o uzyskane wyniki. Przedmiotem badań była trudnopalna taśma przenośnikowa ST 3150 o szerokości B-1200. Testy przeprowadzono na przenośniku taśmowym eksploatowanym w polskiej kopalni podziemnej.
EN
The article presents the results of tests on the quality of conveyor belt joints, which has a significant impact on their strength. Diagnostics of steel conveyor belts using non-destructive methods (NDT) allows detecting and monitoring damage along the entire length of the belt. Such diagnostics also makes it possible to assess the quality of the splices. Tests based on the proposed method were carried out using the Diagbelt diagnostic system developed at the Faculty of Geoengineering, Mining and Geology at the Wroclaw University of Technology.
EN
Background: The paper deals with production process scheduling problem. In large companies, the decision-making process about operators' work, machines availability and production flow is a very difficult task, which is often being done by employees. Thus, not always the decision made is optimal in terms of cost, production time, etc. Methods: As a solution, two intelligent methods: Tabu Search and the genetic algorithm have been analyzed in field of production scheduling. The aim of this work was to examine the possibility of improving presented decision-making process that is being performed when scheduling, using Tabu Search and genetic algorithms. As a result of experimental research, it has been confirmed that the use of appropriately selected and parameterized intelligent methods allows for the optimization of the analyzed production process due to its duration. The research was case of study performed in cooperation with company that produces components for automotive industry. Results: Basing on collected and analyzed data, considered methods can be more or less successfully used in production process scheduling. Comparing both used algorithms, Tabu Search twice proposed worse solutions, the average operational time was 1.63% shorter than the actual one. In this case, better results were reached by using genetic algorithm - potential operational time was always shorter than the actual one, and it was reduced by 6.3% in total on average. Conclusion: Using algorithms allowed to achieve lower workload of employees and to reduce of operational time, which were the evaluation criteria in performed research. Managers of the analyzed company were pleased with the proposed solution and declared interest in developing these methods for future. This shows that intelligent methods can find, in relatively short time, the solution that is close to the optimal and acceptable from the problem point of view.
PL
Wstęp: Artykuł opisuje problem harmonogramowania procesów produkcyjnych. W dużych przedsiębiorstwach proces podejmowania decyzji dotyczących pracy operatorów, maszyn, dostępności zasobów i przepływu produkcji jest bardzo złożonym zadaniem, często wykonywanym przez pracowników. W związku z tym podjęte decyzje nie zawsze są optymalne w kontekście kosztów, czasu produkcji itp. Metody: Jako rozwiązanie, przeanalizowane zostało użycie, w obszarze harmonogramowania produkcji, dwóch metod inteligentnych: Tabu Search i algorytmów genetycznych. Celem pracy było zbadanie możliwości doskonalenia procesu podejmowania decyzji, który jest wykonywany przy harmonogramowaniu produkcji, przy pomocy Tabu Search i algorytmów genetycznych. Jako wynik eksperymentu przeprowadzonego podczas badań, potwierdzono, że użycie odpowiednio wybranych oraz sparametryzowanych metod inteligentnych pozwala na optymalizację analizowanego procesu produkcji. Badania zostały wykonane we współpracy z przedsiębiorstwem zajmującym się produkcją komponentów dla branży motoryzacyjnej, jako studium przypadku. Wyniki: Zgodnie z zebranymi i przeanalizowanymi danymi, wybrane metody mogą być z mniejszym bądź większym powodzeniem stosowane w procesie harmonogramowania produkcji. Porównując zastosowane algorytmy, Tabu Search dwukrotnie zaproponował rozwiązanie gorsze od aktualnego podejścia przedsiębiorstwa, jednak czas produkcji został skrócony średnio o 1.63%. W tym przypadku, lepsze wyniki pozwoliło osiągnąć zastosowanie algorytmu genetycznego - potencjalny czas produkcji był zawsze krótszy od aktualnie stosowanego rozwiązania, a średni czas produkcji został zredukowany o 6.3%. Wnioski: Zastosowanie algorytmów pozwoliło na osiągnięcie niższego obciążenia pracą operatorów oraz zredukowanie czasu operacyjnego, co stanowiło kryteria oceny w przeprowadzonych badaniach. Kierownictwo analizowanego przedsiębiorstwa było zadowolone z zaproponowanych rozwiązań. Zdecydowali się na stosowanie omawianych metod w codziennym harmonogramowaniu produkcji oraz zadeklarowali zainteresowanie rozwojem stosowania metod w przyszłości. Metody inteligentne pozwalają znaleźć, w relatywnie krótkim czasie, rozwiązanie bliskie optymalnemu i akceptowalne z punktu widzenia analizowanego problemu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.