A model for interaction of class A G protein-coupled receptor with the G protein Gα subunit is proposed using the rhodopsin-transducin (RD/Gt) prototype. The model combines the resolved interactions/distances, essential in the active RD*/Gt system, with the structure of Gtα C-terminal peptide bound to RD* while stabilizing it. Assuming the interactions involve conserved parts of the partners, the model specifies the conserved Helix 2 non-polar X- - -X, Helix 3 DRY and Helix 7/8 NP- -Y- - F RD* motifs interacting with the Gtα C-terminal peptide, in compliance with the structure of the latter. A concomitant role of Gtα and Gtγ>C-termini in stabilizing RD* could possibly be resolved assuming a receptor dimer as requisite for G protein activation.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Molecular docking simulations are now fast developing area of research. In this work we describe an effective procedure of preparation of the receptor-ligand complexes. The amino-acid residues involved in ligand binding were identified and described.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
G protein-coupled receptors (GPCRs) transducing diverse external signals to cells via activation of heterotrimeric GTP-binding (G) proteins, estimated to mediate actions of 60% of drugs, had been resistant to structure determination until summer 2000. The first atomic-resolution experimental structure of a GPCR, that of dark (inactive) rhodopsin, thus provides a trustworthy 3D prototype for antagonist-bound forms of this huge family of proteins. In this work, our former theoretical GPCR models are evaluated against the new experimental template. Subsequently, a working hypothesis regarding the signal transduction mechanism by GPCRs is presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.