Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The dissolution of MnO2 from tantalum capacitor scrap using organic acids in various process conditions was studied. The initial materials were of two types: LTC (leaded tantalum capacitors) and SMDTC (surface-mounted device tantalum capacitors). The research materials were prepared by pyrolysis, grinding and sieving and the preparation processes were characterized. Dissolution of MnO2 was carried out with the use of sulfuric acid solutions with the addition of acetic, ascorbic, citric and oxalic organic acids. Results show that the addition of organic acids significantly improves dissolution yields (72-94 vs 90-99 % for H2SO4 and acid mixtures, respectively). In practice, a concentration of organic acid above 1 M results in the complete removal of MnO2.
PL
Obowiązujące przepisy w zakresie ochrony środowiska nakładają na producentów wszelkich materiałów inżynierskich obowiązek takiego ich projektowania i wytwarzania, aby mogły być poddane procesom recyklingu. Obecnie większość materiałów, takich jak metale, stopy metali, tworzywa sztuczne, szkło i in., spełnia te wymagania, dzięki czemu procesy odzysku i recyklingu pozwalają na ich powrót do obiegu. Szczególną grupę materiałów inżynierskich stanowią kompozyty, których recykling nie został wystarczająco opracowany. Wynika to głównie, z ich krótkiego czasu stosowania oraz skomplikowanej struktury, przez co procesy odzysku i recyklingu są mało poznane lub okazują się zbyt kosztowne w porównaniu do składowania odpadów kompozytowych. Należy się jednak spodziewać, iż w przyszłości składowanie tego typu materiałów będzie zabronione, a badania nad ich recyklingiem konieczne są już dziś. W niniejszej pracy dokonano przeglądu metod związanych z odzyskiem i recyklingiem najbardziej popularnych na rynku kompozytów termoutwardzalnych, metalicznych i wieloskładnikowych. Wskazano zalety i wady recyklingu mechanicznego, chemicznego i termicznego oraz dokonano oceny możliwości zastosowania wymienionych metod do wybranych rodzajów kompozytów.
EN
Existing environmental regulations place manufacturers of all engineering materials under obligation to design and produce materials in such a way allowing future recycling. At present, majority of materials, such as metals, alloys, plastics, glass, etc. fulfil this requirement hence recycling processes allow to return them to a circulation. Composite materials are group of materials for which recycling processes are not well developed. It is a result of the relatively short presence time of such materials on the market as well as their complicated structure. Therefore, recycling of composite materials is poorly known or too expensive comparing to the scrap disposal price. However, in future, the disposal of composite material scrap is expected to be forbidden thus researches related to this topic are necessary now. In the present work, the recovery and recycling processes of the most popular composite materials on the market such as thermosetting, metallic and multi-component are reviewed. Advantages and disadvantages of mechanical, chemical and thermal processes are indicated. Additionally, the application feasibility of the processes mentioned above for selected composite materials are evaluated.
PL
Celem pracy było zbadanie możliwości odzysku metali nieżelaznych z konkrecji polimetalicznych pochodzących z dna morskiego metodami piro i hydrometalurgicznymi. W metodzie pirometalurgicznej zbadano wpływ dodatku lepiszcza oraz dodatku składnika żużlotwórczego na wydajność procesu redukcji. Redukcja miała doprowadzić do rozdziału frakcji bogatej w Mn i Fe (faza żużla) od fazy metalicznej zawierającej metale nieżelazne (głównie Cu i Ni). Natomiast metoda hydrometalurgiczna polegała na wyługowaniu do roztworu manganu i żelaza za pomocą kwasu mineralnego bez i z dodatkami kwasów organicznych. Na obecnym etapie badań dla każdej z zastosowanych metod, uzyskano rozdział metali żelaznych od nieżelaznych i koncentraty tych ostatnich nadające się do dalszego przerobu technologiami pirometalurgii miedzi.
EN
The aim of the study was to investigate the possibilities of recovering non-ferrous metals from polymetallic nodules originating from the ocean floor by pyro- and hydrometallurgical methods. In the pyrometallurgical method, the effect of the addition of the binder and the slag-forming component on the efficiency of the reduction process was examined. The reduction was to lead to separation of the fraction rich in Mn and Fe (slag phase) from the metallic phase containing non-ferrous metals (mainly Cu and Ni). The hydrometallurgical method, on the other hand, consisted in leaching of manganese and iron into the solution with mineral acid without and with the addition of organic acids. At the current stage of research for each of the methods used, separation of ferrous and non-ferrous metals was obtained and concentrates of these last ones suitable for further processing by copper pyrometallurgy technologies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.