Habitat mapping has become an increasingly important application of remote sensing. Active and passive acoustic techniques have greatly improved in the last decade, and their use extends into other spheres to show their economic, legal, political and environmental benefits. This paper reviews the current status of acoustic techniques for habitat mapping. Traditional techniques include echosounders, multibeam systems and sidescan sonars. Passive techniques are also presented, along with geoacoustic inversion and acoustic daylight imaging. The developments in new techniques such as non-linear acoustics, synthetic aperture and interferometry are reviewed. Some emerging techniques are showing increasing potential for habitat mapping, and bistatic sonar, parametric SAS and 3-D chirp profiling are briefly reviewed. Leading international programmes are now making use of these techniques, most often in combination, and their results inform the recommendations for future uses and desired technological developments.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Bistatic sonars use separate transmitter and receiver(s), optimising the information received from seabed/target(s) scattering. Laboratory experiments are ideal to understand scattering processes and to optimise data collection strategies. They can be full-scale or scaled down. In the latter case, the influence on bistatic scattering processes needs to be carefully weighed, to validate the transition to full-scale experiments. This is particularly relevant as sea trials are expensive, difficult to conduct, and generally impossible to repeat. This article presents the results from: (1) scaled experiments on bare seabed and targets, performed at Bath and other places; (2) full-scale experiments in the GESMA submarine pens during the EC-SITAR project and (3) sea trials from similar experiments in Italy and Sweden. These results are put into the wider context of other international efforts. These three approaches (scaled and full-scale experiments plus sea trials) can be used in synergy. This has important implications for future experiments, the design of surveys and instruments, and analyses of past/future acoustic datasets.