Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Local geometry of orbits for an ordinary classical lie supergroup
100%
|
|
tom 4
|
nr 3
449-506
EN
In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.
2
Content available remote The duality correspondence of infinitesimal characters
100%
EN
We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.
3
Content available remote A reverse engineering approach to the Weil representation
63%
|
|
nr 10
1500-1585
EN
We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.
4
63%
EN
For the dual pair considered, the Cauchy Harish-Chandra Integral, as a distribution on the Lie algebra, is the limit of the holomorphic extension of the reciprocal of the determinant. We compute that limit explicitly in terms of the Harish-Chandra orbital integrals.
5
Content available remote On the Moment Map of a Multiplicity Free Action
63%
EN
The purpose of this note is to show that the Orbit Conjecture of C. Benson, J. Jenkins, R. L. Lipsman and G. Ratcliff [BJLR1] is true. Another proof of that fact has been given by those authors in [BJLR2]. Their proof is based on their earlier results, announced together with the conjecture in [BJLR1]. We follow another path: using a geometric quantization result of Guillemin-Sternberg [G-S] we reduce the conjecture to a similar statement for a projective space, which is a special case of a characterization of projective smooth spherical varieties due to Brion [B2].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.