Let a,b and c be relatively prime positive integers such that a²+b² = c². We prove that if $b ≡ 0 (mod 2^{r})$ and $b ≡ ±2^{r} (mod a)$ for some non-negative integer r, then the Diophantine equation $a^{x} + b^{y} = c^z$ has only the positive solution (x,y,z) = (2,2,2). We also show that the same holds if c ≡ -1 (mod a).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let E be an elliptic curve over the rationals ℚ given by y² = x³ - nx with a positive integer n. We consider first the case where n = N² for a square-free integer N. Then we show that if the Mordell-Weil group E(ℚ ) has rank one, there exist at most 17 integer points on E. Moreover, we show that for some parameterized N a certain point P can be in a system of generators for E(ℚ ), and we determine the integer points in the group generated by the point P and the torsion points. Secondly, we consider the case where n = s⁴ + t⁴ for distinct positive integers s and t. We then show that if n is fourth-power-free, the points P₁ = (-t²,s²t) and P₂ = (-s²,st²) can be in a system of generators for E(ℚ ). Furthermore, we prove that if n is square-free, then there exist at most nine integer points in the group Γ generated by the points P₁, P₂ and the torsion point (0,0). In particular, in case n = s⁴ + 1 the group Γ has exactly seven integer points.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study integral points and generators on cubic twists of the Fermat cubic curve. The main results assert that integral points can be in a system of generators in the case where the Mordell-Weil rank is at most two. As a corollary, we explicitly describe the integral points on the curve.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.