Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Jeśmanowicz' conjecture with congruence relations
100%
|
|
nr 2
211-222
EN
Let a,b and c be relatively prime positive integers such that a²+b² = c². We prove that if $b ≡ 0 (mod 2^{r})$ and $b ≡ ±2^{r} (mod a)$ for some non-negative integer r, then the Diophantine equation $a^{x} + b^{y} = c^z$ has only the positive solution (x,y,z) = (2,2,2). We also show that the same holds if c ≡ -1 (mod a).
2
Content available remote Generators and integer points on the elliptic curve y² = x³ - nx
100%
|
|
nr 4
333-348
EN
Let E be an elliptic curve over the rationals ℚ given by y² = x³ - nx with a positive integer n. We consider first the case where n = N² for a square-free integer N. Then we show that if the Mordell-Weil group E(ℚ ) has rank one, there exist at most 17 integer points on E. Moreover, we show that for some parameterized N a certain point P can be in a system of generators for E(ℚ ), and we determine the integer points in the group generated by the point P and the torsion points. Secondly, we consider the case where n = s⁴ + t⁴ for distinct positive integers s and t. We then show that if n is fourth-power-free, the points P₁ = (-t²,s²t) and P₂ = (-s²,st²) can be in a system of generators for E(ℚ ). Furthermore, we prove that if n is square-free, then there exist at most nine integer points in the group Γ generated by the points P₁, P₂ and the torsion point (0,0). In particular, in case n = s⁴ + 1 the group Γ has exactly seven integer points.
3
Content available remote Generators and integral points on twists of the Fermat cubic
100%
|
|
nr 1
1-16
EN
We study integral points and generators on cubic twists of the Fermat cubic curve. The main results assert that integral points can be in a system of generators in the case where the Mordell-Weil rank is at most two. As a corollary, we explicitly describe the integral points on the curve.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.