In modern production, milling is considered the widespread cutting process in the formatting field. It remains important to study this manufacturing process as it can be subject to some parasitic phenomena that can degrade surface roughness of the machined part, increase tool wear and reduce spindle life span. In fact, the best quality work piece is obtained with a suitable choice of parameters and cutting conditions. In another hand, the study of tool vibrations and the cutting force attitude is related to the study of bearings as they present an essential part in the spindle system. In this work, a modeling of a High Speed Milling (HSM) spindle supported by two pair of Active Magnetic Bearings (AMB) is presented. The spindle is modeled by Timoshenko beam finite elements where six degrees of freedom are taken into account. The rigid displacements are also introduced in the modeling. Gyroscopic and centrifugal terms are included in the general equation. The bearings reaction forces are modeled as linear functions of journal displacement and velocity in the bearing clearance. A cutting force model for peripheral milling is proposed to estimate the tool-tip dynamic responses as well as dynamic cutting forces which are also numerically investigated. The time history of response, orbit, FFT diagram at the tool-tip center and the bearings dynamic coefficients are plotted to analyze dynamic behavior of the spindle.
This paper presents a pre-dimensioning method applied to a mechatronic system and regarding the vibrational aspect, through a simple modeling process in Dymola environment. We study the vibration transmission between dynamic exciters (motors) and receivers (electronic cards) which are located on a simply supported rectangular plate, using an analytical approach. This new method will allow us to perform representative and robust modeling and simulation. The solution for this issue would be a pre-sizing and pre-positioning procedure. It aims to determine a set of possible technical solutions and principal characteristics before the definitive choice of components and precise sizing of the system. The presented method predicts also behaviour of the mechatronic system. In order to validate the model with respect to the finite element method, selected simulation results are presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.