Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We show that in Kabbalah, the esoteric teaching of Judaism, there were developed ideas of unconventional automata in which operations over characters of the Hebrew alphabet can simulate all real processes producing appropriate strings in accordance with some algorithms. These ideas may be used now in a syllogistic extension of Lindenmayer systems (L-systems), where we deal also with strings in the Kabbalistic-Leibnizean meaning. This extension is illustrated by the behavior of Physarum polycephalum plasmodia which can implement, first, the Aristotelian syllogistic and, second, a Talmudic syllogistic by qal wa-homer.
2
100%
PL
In 1850 a very important decision for the whole history of humanities and social sciences in Russia was made by Nicholas I, the Emperor of Russia: to eliminate the teaching of philosophy in public universities in order to protect the regime from the Enlightenment ideas. Only logic and experimental psychology were permitted, but only if taught by theology professors. On the one hand, this decision caused the development of the Russian theistic philosophy enhanced by modern methodology represented by logic and psychology of that time. On the other hand, investigations in symbolic logic performed mainly at the Kazan University and the Odessa University were a bit marginal. Because of the theistic nature of general logic, from 1850 to 1917 in Russia there was a gap between philosophical and mathematical logics.
EN
The paper considers main features of two groups of logics for biological devices, called Physarum Chips, based on the plasmodium. Let us recall that the plasmodium is a single cell with many diploid nuclei. It propagates networks by growing pseudopodia to connect scattered nutrients (pieces of food). As a result, we deal with a kind of computing. The first group of logics for Physarum Chips formalizes the plasmodium behaviour under conditions of nutrient-poor substrate. This group can be defined as standard storage modification machines. The second group of logics for Physarum Chips covers the plasmodium computing under conditions of nutrient-rich substrate. In this case the plasmodium behaves in a massively parallel manner and propagates in all possible directions. The logics of the second group are unconventional and deal with non-well-founded data such as infinite streams.
EN
One of the main assumptions of mathematical tools in science is represented by the idea of measurability and additivity of reality. For discovering the physical universe additive measures such as mass, force, energy, temperature, etc. are used. Economics and conventional business intelligence try to continue this empiricist tradition and in statistical and econometric tools they appeal only to the measurable aspects of reality. However, a lot of important variables of economic systems cannot be observable and additive in principle. These variables can be called symbolic values or symbolic meanings and studied within symbolic interactionism, the theory developed since George Herbert Mead and Herbert Blumer. In statistical and econometric tools of business intelligence we accept only phenomena with causal connections measured by additive measures. In the paper we show that in the social world we deal with symbolic interactions which can be studied by non-additive labels (symbolic meanings or symbolic values). For accepting the variety of such phenomena we should avoid additivity of basic labels and construct a new probabilistic method in business intelligence based on non-Archimedean probabilities.
EN
In the paper, a new syllogistic system is built up. This system simulates a massive-parallel behavior in the propagation of collectives of parasites. In particular, this system simulates the behavior of collectives of trematode larvae (miracidia and cercariae).
|
|
nr 3
41-50
EN
We have proposed to use some features of swarm behaviours in modelling business processes. Due to these features we deal with a propagation of business processes in all accessible directions. This propagation is involved into our formalization instead of communicating sequential processes. As a result, we have constructed a business process diagram language based on the swarm behavior and an extension of that language in the form of reflexive management language.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.