It is well-known that determining the optimal number of guards which can cover the interior of a simple nonconvex polygon presents an NP-hard problem. The optimal guard placement can be described as a problem which seeks for the smallest number of guards required to cover every point in a complex environment. In this paper, we propose an exact twophase method as well as an approximate method for tackling the mentioned issue. The proposed exact approach in the first phase maps camera placement problem to the set covering problem, while in the second phase it uses famous state-of-the-art CPLEX solver to address set covering problem. The performance of our combined exact algorithm was compared to the performance of the approximate one. According to the results presented in the experimental analysis, it can be seen that the exact approach outperforms the approximate method for all instances.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
To tackle a specific class of engineering problems, in this paper, we propose an effectively integrated bat algorithm with simulated annealing for solving constrained optimization problems. Our proposed method (I-BASA) involves simulated annealing, Gaussian distribution, and a new mutation operator into the simple Bat algorithm to accelerate the search performance as well as to additionally improve the diversification of the whole space. The proposed method performs balancing between the grave exploitation of the Bat algorithm and global exploration of the Simulated annealing. The standard engineering benchmark problems from the literature were considered in the competition between our integrated method and the latest swarm intelligence algorithms in the area of design optimization. The simulations results show that I-BASA produces high-quality solutions as well as a low number of function evaluations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.