Evidence-based medicine can be effective only if constantly tested against errors in medical practice. Clinical record database summarization supported by a machine allows allow to detect anomalies and therefore help detect the errors in early phases of care. Summarization system is a part of Clinical Decision Support Systems however it cannot be used directly by the stakeholder as long as s/he is not able to query the clinical record database. Natural Query Languages allow opening access to data for clinical practitioners, that usually do not have knowledge about articial query languages. Results: We have developed general purpose reporting system called Ask Data Anything (ADA) that we applied to a particular CDSS implementation. As a result, we obtained summarization system that opens the access for these of clinical researchers that were excluded from the meaningful summary of clinical records stored in a given clinical database. The most significant part of the component - NQL parser - is a hybrid of Controlled Natural Language (CNL) and pattern matching with a prior error repair phase. Equipped with reasoning capabilities due to the intensive use of semantic technologies, our hybrid approach allows one to use very simple, keyword-based (even erroneous) queries as well as complex CNL ones with the support of a predictive editor. By using ADA sophisticated summarizations of clinical data are produced as a result of NQL query execution. In this paper, we will present the main ideas underlying ADA component in the context of CDSS.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.