Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Prawda o geopolimerach
100%
PL
Podstawy produkcji geopolimerów opracował prof. Hans Kühl, znany do dnia dzisiejszego z wprowadzenia modułu nasycenia wapnem klinkieru: MNLP =100 CaO/2,8SiO2 + 1,65Al2O3 + 0,70Fe2O3. Wzór ten Kühl oparł na założeniu, że najlepszy klinkier powinien składać się z C3S, C3A i C2F, a stosunek masowy CaO do występujących w tych fazach składników wynosi odpowiednio: 2,8, 1,65 i 0,70. Analiza warunków równowagowych w układzie czteroskładnikowym doprowadziła Kühla do tak zwanego kryterium wapna, odpowiadającego dopuszczalnej maksymalnej ilości wapna w klinkierze, w warunkach odległych od stanu równowagi: MNLP =100 CaO/2,8SiO2 + 1,1Al2O3 + 0,7Fe2O3. Natomiast bardzo mało znana jest hipoteza Kühla, który stwierdził, że dobrym aktywatorem żużla wielkopiecowego są siarczany i stosował aktywację żużla wielkopiecowego za pomocą wapna i anhydrytu, na co uzyskał patent niemiecki: DRP 237777, w roku 1907. Ten cement siarczanowo-żużlowy zawierał 80-85% żużla granulowanego, 10-15% anhydrytu i 5% klinkieru. Był on znormalizowany we Francji, Wielkiej Brytanii, Belgii i w Niemczech. Także Kühl już w roku 1907 stwierdził możliwość wytwarzania cementów z żużla aktywowanego wodorotlenkiem sodu. Wynika stąd że Kühl był prekursorem wytwarzania „geopolimerów”. Bardzo wiele jest badań żużli aktywowanych związkami sodu i potasu. Zwykle stosuje się oba te związki i od pewnego czasu ilościową przewagę uzyskuje krzemian potasu. Głuchowski uzyskał w 1958 r. patent na cement uzyskany z żużla aktywowanego wodorotlenkiem sodu. Natomiast jedynym zastosowaniem przemysłowym tego spoiwa i betonu z niego uzyskanego była budowa w roku 1965 kilku domów w Kijowie, przez Głuchowskiego. Głuchowski wprowadził również nazwę „geopolimer”, która wywołała burzę krytyki w byłym Związku Radzieckim, a w tych latach było w Rosji wielu wybitnych znawców chemii cementu – wychowanków Budnikowa, na przykład Butt i Timaszew, a oprócz nich także Mczedłow-Petrosjan, organizator Kongresu Chemii Cementu w Moskwie, w roku 1974. Przemysłowe zastosowanie geopolimerów w Polsce ogranicza się do działalności profesora Małolepszego, który zastosował to spoiwo, z żużla wielkopiecowego aktywowanego dodatkiem NaOH, do budowy hotelu studenckiego w Krakowie. Wypada także dodać, że jest bardzo mało publikacji na temat stosowania geopolimerów do wytwarzania betonów i, co najważniejsze, brak ich zupełnie o stosowaniu tych spoiw i betonów w budownictwie. Natomiast jest bardzo wiele publikacji przedstawiających badania laboratoryjne geopolimerów, aktywowanych głównie dwoma dodatkami: NaOH i K2SiO3. Szczególnie krzemian potasu jest ostatnio podstawowym aktywatorem, gdyż przyspiesza powstawanie fazy C-S-H i tym samym zwiększa wytrzymałość geopolimeru.
EN
The basis for the geopolymers production was drawn up by prof. Kühl, well known to present day from the introduction of the modulus of clinker lime saturation: MNLP =100 CaO/2.8SiO2 + 1.65Al2O3 + 0.70Fe2O3. This Kühl’s formula was lined on the assumption that the best clinker should be composed of C3S, C3A and C2F and the mass ratio of CaO in respect to other components is equal adequately: 2.8, 1.65 and 0.70. The analyses of the equilibrium condition in the four components system led Kühl to the so-called lime criterion, equal to the permissible maximal lime content in clinker, in the conditions far from the equilibrium: MNLP =100 CaO/2.8SiO2 + 1.1Al2O3 + 0.7Fe2O3. However, very little is known about Kühl’s hypothesis, which establishes that the good activators for blast furnace slag are sulphates and the slag activation was applied with lime and anhydrite, for which he obtained German patent: DRP 237777, in the year 1907. This sulphate-slag cement contained 80 - 85% of granulated slag, 10 - 15% of anhydrite and 5% of clinker. It was standardized in France, Great Britain and Germany. Also, Kühl already in the year 1907, establish the possibility of cement production from slag, activated with sodium hydroxide. Thus Kühl was the precursor of the geopolymers production. There are many studies of slag activated with the compounds of sodium and potassium. Usually, these compounds are both applicate and from some time the content of potassium silicate became higher. Gluhovsky obtained in 1958 the patent for cement obtained from slag activated with sodium hydroxide. However, the only industrial application of this binder and concrete obtained from, was the construction in 1965 of some houses in Kyiv by Gluhovsky. Gluhovsky introduced also the term “geopolymer”, which caused the storm of the critic in the former Soviet Union. In these years was in Russia many outstanding experts of the cement chemistry - alumni of Budnikov, for example, Butt and Timachev, and besides also Mchedlov-Petrosian, the organizer of 6th Congress of Cement Chemistry in Moscow, in 1974. Industrial application of geopolymers in Poland is limited to the activity of professor Małolepszy, which used this binder of blast furnace slag activated with NaOH addition to the construction of the students’ hotel, in Cracow. It should be also added that there are very few articles about the application of geopolymers for concrete production and, what is the most important, is the shortage of the papers of these binders and concretes, in the construction applications. However, there are many papers about the laboratory studies of geopolymers, activated principally by two compounds NaOH and K2SiO3. Particularly the potassium silicate is in the last time the principal activator because it accelerates the C-S-H phase formation and simultaneously increases the strength of geopolymer.
2
Content available remote Beton z proszków reaktywnych z zastosowaniem cementu hutniczego
63%
PL
W pracy przedstawiono wyniki badań betonu z proszków reaktywnych [BPR], otrzymanego z wykorzystaniem cementu hutniczego CEM III/A 42,5 N LH/HSR/NA zawierającego około 60 % mas. granulowanego żużla wielkopiecowego. Optymalizację składu mieszanki betonowej, mającą na celu uzyskanie największego stopienia upakowania cząstek w kompozycie, przeprowadzono w oparciu o krzywą optymalnego uziarnienia Funka. Mały stosunek wody do spoiwa równy 0,2, uzyskano poprzez stosowanie superplastyfikatora polikarboksylanowego. Wykazano, że jest możliwe uzyskanie, bez obróbki termicznej, betonu BPR z zastosowaniem cementu hutniczego, zawierającego 2,0% obj. włókien stalowych, o wytrzymałości na ściskanie około 200 MPa i wytrzymałości na zginanie 56,7 MPa, po 180 dniach dojrzewania. Nasiąkliwość tego betonu wynosi tylko 2,4%, a wyniki badań mrozoodporności, pozwalają ocenić mrozoodporność tego betonu jako bardzo dobrą wg normy SS 13 72 44. BPR ma zwartą mikrostrukturą, a zidentyfikowana faza C-S-H wykazuje mały stosunek C/S.
EN
The paper presents the results of tests of the reactive powder concrete [RPC] obtained from the CEM III/A 42.5 N LH/HSR/NA blast furnace slag cement, containing about 60 % of granulated blast furnace slag. The optimisation of the concrete mix composition, aimed at obtaining the largest particle packing in the composite, was carried out based on Funk’s optimal particle size distribution curve. A low water to binder ratio of 0.2 was obtained by using a superplasticiser based on polycarboxylates. It has been shown that it is possible to obtain, under normal conditions, RPC with the use of slag cement, containing 2.0% vol. of steel fibres, with a compressive strength of about 200 MPa and a flexural strength of about 57 MPa, after 180 days of curing. The water absorption of this concrete is only 2.4%, and the results of freeze-thaw resistance tests allow to assessing the freeze-thaw resistance of this concrete as very good, according to the standard SS 13 72 44. RPC has a compact microstructure and the identified C-S-H phase shows a low C/S ratio.
PL
Przedstawiono badania wpływu mączki, uzyskanej ze skorupek jaj kurzych oraz z wapienia, na właściwości reologiczne zaczynów cementowych. Mączki dodano do cementu portlandzkiego CEM I 42,5 R, w ilości 30%. Stwierdzono większe granice płynięcia i lepkości plastyczne dla zaczynów z cementów z dodatkiem mączki ze skorupek jaj kurzych, od zaczynów cementowych, z dodatkiem mączki z wapienia. Przyczyną jest wpływ budowy błonki jajka kurzego. Chłonąca wodę i pęczniejąca w zaczynie cementowym błonka, powoduje wzrost lepkości oraz zwiększenie tiksotropii w wyniku łączenia się cząstek, w porównaniu z klasycznym zaczynem oraz zaczynem z dodatkiem mączki z wapienia.
EN
The paper presents the effect of the powders obtained from eggshells and limestone on the rheological properties of cement pastes. Both powders were added to Portland cement CEM I 42.5 R, 30% by mass. The higher yield stress and plastic viscosity of the cement pastes prepared with the addition of eggshell powder, compared to the cement pastes made with limestone powder, were explained by the influence of the eggshell membrane and its chemical structure. The membrane, which absorbs water and expands in the cement paste, is causing an increase in rheological parameters. The membrane, which absorbs water and swells in the cement paste, causes an increase in viscosity and thixotropy compared to the neat cement slurry and slurry with limestone meal added as a result of particle bonding.
PL
W pracy przedstawiono wyniki badań wpływu stopnia rozdrobnienia i dodatku żużla wielkopiecowego do cementu, na wymywalność mieszanek betonowych do robót podwodnych. Stwierdzono, że odporność na wymywanie mieszanek betonowych, zależy w znacznym stopniu od stopnia rozdrobnienia i zawartości cząstek drobnych w spoiwie. Można to wyjaśnić łatwiejszym wiązaniem drobniejszych cząstek spoiwa przez usieciowanie polimeru, stanowiącego domieszkę zwiększającą lepkość. Wykazano, że wpływ tego polimeru na szybkość procesu hydratacji cementu i czas wiązania, zależy od zawartości cząstek drobnych w zaczynie.
XX
In the paper the influence of granulated blast furnace slag addition and fineness to cement on the washout of underwater concrete mixes was examined. It has been established that the washout resistance of concrete mixes largely depends on the level of fineness and content of fine particles in the binder. The aforementioned conclusions may be explained by easier incorporation of finer particles of the binder in the polymer reticulation, of the viscosity enhancing admixture. It has been shown that the effect of this admixture on the rate of hydration and setting time of cement depends on the fine particle content in the paste.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.