Induction motors (IMs) experience power losses when a portion of the input power is converted to heat instead of driving the load. The combined effect of copper losses, core losses, and mechanical losses results in IM power losses. Unfortunately, the core losses in the motor, which have a considerable impact on its energy efficiency, are not taken into account by the generally employed dynamic model in the majority of the studies. Due to this, the motor rating often corresponds to the worst-case load in applications, but the motor frequently operates below rated conditions. A hybridized model reference adaptive system (MRAS) with sliding mode control (SMC) is used in this study for sensorless speed control of an induction motor with core loss, allowing the motor to operate under a variety of load conditions. As a result, the machine can run at maximum efficiency while carrying its rated load. By adjusting the 𝛼-axis current in the 𝛼 𝛽 reference frame in vector-controlled drives, the system’s performance is enhanced by running the motor at its optimum flux. Regarding the torque and speed of both induction motors with and without core loss, the Adaptive Observer Sliding Mode Control (AOSMC) has been constructed and simulated in this case. The AOSMC with core loss produced good performance when the proposed controller was tested.
The use of the interior permanent magnet synchronous machine (IPMSM) drive has profoundly increased in a large number of applications due to numerous advantages. Owing to the disadvantages of mechanical sensors, sensorless control techniques are employed to enhance the performance of the IPMSM drive by removing the effect of noise and gain drift due to the sensor, increasing reliability, cost saving, and reducing overall size. This article presents the comparative analysis between the adaptive observer and non-adaptive extended electromotive force (EEMF) observer based on the active flux concept in a stationary reference frame (α–β). Moreover, the effect of slot harmonics and non-sinusoidal distribution of rotor flux is present in the three-phase IPMSM, this problem is considered as the control system disturbances in this article. Due to the non-sinusoidal distribution of flux and slot harmonics, the observer structure in the rotating reference frame (d–q) fails to estimate at the low-speed operation range. Comparative analysis between adaptive and non-adaptive observer structures is provided for a wide speed range. The effectiveness of the observer structures is examined using the classical field-oriented control scheme. In the end, simulation and experimental results are demonstrated to validate the performance of the sensorless control scheme using the adaptive and non-adaptive observer structures for the three-phase IPMSM drive setup.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.