Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tool wear condition monitoring (TCM) is essential for milling process to ensure the machining quality, and the long short-term memory network (LSTM) is a good choice for predicting tool wear value. However, the robustness of LSTM- based method is poor when cutting condition changes. A novel method based on data fusion enhanced LSTM is proposed to estimate tool wear value under different cutting conditions. Firstly, vibration time series signal collected from milling process are transformed to feature space through empirical mode decomposition, variational mode decomposition and fourier synchro squeezed transform. And then few feature series are selected by neighborhood component analysis to reduce dimension of the signal features. Finally, these selected feature series are input to train the bidirectional LSTM network and estimate tool wear value. Applications of the proposed method to milling TCM experiments demonstrate it outperforms significantly SVR- based and RNN- based methods under different cutting conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.