Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Identification of petrophysical parameters including porosity plays an important role to evaluate hydrocarbon reservoirs. A precise prediction of porosity in oil and gas reservoirs may prevent lots of costs before drilling operations. Porosity obtained from core analysis in laboratory is the most reliable one, while they are very expensive and not always accessible. Inappropriate or missing data in under-survey locations are a key challenge for reservoir engineers. In this paper, support vector regression (SVR) is used to estimate porosity in one of the oil fields in south of Iran. SVR creates models due to structural risk minimization methods which help us to produce models with better generalization and less risk of overfitting. Definitely, measured data are always contaminated with noise. One of the common methods to reduce noise and outliers in data is to process them before using them to train the algorithm; during processing, outliers and some noisy data can be suppressed from data, while it is not always easy to distinguish real data from noise. In this paper, we modified SVR to Fuzzy SVR and Fuzzy C Means (FCM) SVR, which are used to decrease effect of noise on model, and then by adding artificial noise including random noise and outliers to data we investigated how these two methods respond to presence of noise. The results show the presence of noise and outliers in data can alter the center locations and distribution of data points in clusters in FCM SVR. Similarly, it can change the variance of Gaussian membership function we used for Fuzzy SVR, but overall, the results show Fuzzy SVR model is notably more robust against noise compared to FCM SVR. Correlation coefficient (CC) calculated between model and core data decreased from 78 to 67% after noise added to data in FCM SVR model, however, calculated CC for Fuzzy SVR remained almost steady altering from 87 to 86%. Subsequently, calculated root mean square error (RMSE) between models and core data increased from 0.0376 to 0.03827 for Fuzzy SVR, while RMSE jumped from 0.0448 to 0.0517 for FCM SVR.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.