The article has been devoted to issues connected with socket fusion welding, which is next to welding one of the methods of thermoplastic polymers joining. In this paper, the research was presented, which the aim was analysis of quality of joints obtained as a result of resistance welding of polypropylene pipes with diameter ø20 in the temperature range of 200÷230°C. To that end a Testo thermal imaging camera was used, flexural strength of the combined components was tested as well as the received weld was observed under a stereoscopic microscope. Conducted studies showed that the best results of joint are obtained during welding at 220°C and 230°C, while lower temperatures did not fully perform their function during the process of joining the pipe elements.
The article presents the results of research on selected thermal, mechanical properties, as well as the microscopic structure of filaments and details made on a 3D printer in FDM technology. The materials used in the study were PETG (polyethylene terephthalate doped with glycol) and PLA (polylactide) doped with copper. As part of the study, Differential Scanning Calorimetry (DSC) was performed in order to determine the temperatures of phase transformations and changes in melting enthalpy values of filaments before the printing process and also elements made of them. The second part of the research was electrocorrosive ageing process of printouts, carried out in the Simulated Body Fluid solution in a device generating 0.3 A direct current, voltage with value 4.3 V for the entire duration of the test, which was 720 h. After this process DSC test was conducted again. The next stage of the research was Dynamic Mechanical Analysis (DMA) of printouts before and after electrocorrosive ageing process. This test was carried out to characterize the dynamic-mechanical properties as a function of frequency, temperature and time. Additionally, microscopic analyses of the surfaces of the tested printouts were performed in order to assess the changes after electrolysis.
The article has presented the method of 3D Digital Light Processing printing as one of the technologies used for rapid prototyping of dental models and making elements of dentures. in this work the research was presented, which the aim was to determine the effect of additional exposure time on the properties of the obtained printouts. Dynamic Mechanical Analysis test showed significant differences in stiffness between uncured specimens as well as specimens cured for 10, 20 and 30 minutes. in turn the obtained TG and DTG curves allowed to determine the most optimal curing time for DLP printouts. These studies provide the basis for determining the most appropriate method for handling printouts after the process of printing from liquid resin, so that they are the best possible quality for dentists and prosthodontists.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.