Let G be a homogeneous Lie group with a left Haar measure dg and L the action of G as left translations on $L_p(G;dg)$. Further, let H = dL(C) denote a homogeneous operator associated with L. If H is positive and hypoelliptic on $L_2$ we prove that it is closed on each of the $L_p$-spaces, p ∈ 〈 1,∞〉, and that it generates a semigroup S with a smooth kernel K which, with its derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the open right half-plane on all the $L_p$-spaces, p ∈ [1,∞]. Further extensions of these results to nonhomogeneous operators and general representations are also given.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Le but de cette note est de montrer que le principe du maximum, même dans une version affaiblie, n'est pas vérifıé pour la classe des opérateurs paraboliques du type $d/dt +L$, où L est un opérateur différentiel elliptique d'ordre 2 sous forme divergence à coefficients complexes mesurables et bornés en dimension supérieure ou égale à 5. Le principe de démonstration repose sur un résultat abstrait de la théorie des semi-groupes permettant d'utiliser le contre-exemple présenté dans [MNP] à la régularité des solutions faibles pour cette classe d'opérateurs elliptiques.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.