Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as $T = T_{a} ∘ T_{ϕ}$, where $T_{a}(x) = axa^{-1}$ is an inner automorphism implemented by an element a ∈ E(M), and $T_{ϕ}$ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type $I_{∞}$ then every band preserving automorphism of E(M) is inner.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.