Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2023
|
tom Vol. 71, no. 6
2715--2731
EN
How to effectively and economically estimate the occurrence of sandstone-type uranium deposits in deep metallogenic environments considering the high costs of drilling methods has troubled the uranium geologists for a long time. To address this, we developed a novel workflow using a combination of clustering and neural networks in seismic attributes (SA) analysis to characterize uranium-bearing environments in directly predicting uranium zones. In the workflow, PCA and a clustering method for SA analysis in the target layer were first used to predict favorable zones for uranium; second, supervised neural networks were utilized for quantitative estimation of gamma volume, with subsequent delineation of the zones with high gamma anomalies; finally, results from the two processes were examined for mutual intersection, and intersection results with ordinal ranking of A and B were then extracted. In practical application, several A-level and B-level regions were predicted, which represent very high U-mineralization potential and significant potential, respectively. The prediction results were then essentially verified by logging data of the study area. We consider our developed approach to be a reasonably cost-effective technique for uranium-bearing environment prediction as it can yield useful suggestions for drilling programs with significantly reduced cost and prospecting risk.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.