Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Collision risk measurement is an essential topic for ship collision prevention. Many risk measures, i.e. DCPA/TCPA, etc., decouple the ship traffic into several pairs of ships and then evaluate the risk in each pair. This kind of measurement loses some information of the entire traffic and might include some biases in risk measurement, especially in multiple-ship scenarios. In this article, Imminent Collision Risk Assessment (ICRA) is extended, which formulates collision risk as a ratio of reachable maneuvers leading to a collision and all reachable maneuvers (velocities). Two groups of scenarios have been simulated to show the ICRA is suitable for assessing the collision risk in multiple-ship scenarios. Moreover, two improvements have been introduced: (1) a generalized velocity obstacle algorithm is introduced to collect the maneuvers leading to collisions, which considers ship dynamics; (2) the constraints of forces are considered in the formulation of reachable maneuvers. As a result, the proposed measurement helps one ship assess the risk of approaching obstacles which are difficult to avoid the collision in terms of own-ship’s dynamics and kinetic constraints.
|
|
tom 19
|
nr 2
EN
Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting PI3K-Akt or Ras-MAPK signaling sensitizes many cancer types to radiotherapy and chemotherapy, but the underlying molecular mechanisms have yet to be determined. During the multi-step processes of tumorigenesis, cancer cells gain the capability to disrupt the cell cycle checkpoint and increase the activity of CDK4/6 by disrupting the PI3K, Ras, p53, and Rb signaling circuits. Recent advances have demonstrated that PI3K-Akt-mTOR signaling controls FANCD2 and ribonucleotide reductase (RNR). FANCD2 plays an important role in the resistance of cells to DNA damage agents and the activation of DNA damage checkpoints, while RNR is critical for the completion of DNA replication and repair in response to DNA damage and replication stress. Regulation of FANCD2 and RNR suggests that cancer cells depend on PI3K-Akt-mTOR signaling for survival in response to DNA damage, indicating that the PI3K-AktmTOR pathway promotes resistance to chemotherapy and radiotherapy by enhancing DNA damage repair.
|
|
nr 1
EN
Even though solid backfill mining can address some environmental issues of coal mining (like surface subsidence and gangue storage), on the other hand the long exposure of gangue to rain or other surficial water will also result in the leaching of heavy metal ions, which in turn will pose the threat of potential pollution to groundwater. In response to resolving the above-mentioned problem, this paper simulated the concentration distribution and migration principle of Cu²⁺ in various soils by applying COMSOL Multiphysics software, and the results show that the diffusion distance of Cu²⁺ in different soils are ranked as clay, silty clay, loess, and sandy soil. In addition, the concentration will decrease with the increase of depth and the Darcy velocity contours of Cu²⁺ distribute radially and symmetrically in the transverse direction. The velocity gradient of Darcy velocity in different soils is clay soil > Silty clay soil > loess > sandy soil.
4
Content available remote 3D Measurement and Modelling of Magnetic Properties of Soft Magnetic Composite
80%
|
|
tom R. 85, nr 1
11-15
EN
The soft magnetic composite (SMC) is a new type of soft magnetic material made of insulated iron powders. Its special characteristics could enable the development of low cost high performance electrical machines. This paper presents the measurement and modelling of magnetic properties of SMC under 3D magnetizations. Detailed descriptions of the 3D magnetic property tester, principle of measurement, core loss models, and experimental results are included and discussed.
PL
Magnetycznie miękkie kompozyty (soft magnetic composites – SMC) są nowym rodzajem magnetycznie miękkich materiałów wykonanych z elektrycznie izolowanych cząsteczek proszku żelaza. Specjalne charakterystyki takich materiałów mogą umożliwić rozwój tanich i wydajnych maszyn elektrycznych. Artykuł prezentuje pomiary i modelowanie własności magnetycznych SMC w warunkach przemagnesowania 3D. Podano dokładny opis użytej techniki pomiarowej, modelu i wyników pomiarowych.
EN
Difference in isozymes and activities of peroxidase (POD) and superoxide dismutase (SOD) in two barley (Hordeum vulgare L.) genotypes differing in salt tolerance (Gebeina, tolerant; Quzhou, sensitive) was investigated using a hydroponic experiment. The activities of both enzymes were significantly increased when the plants of the two barley genotypes were exposed to salt stress, with salt-tolerant genotype being generally higher than the sensitive one. The variation in the POD and SOD isozymes was dependent on barley genotype, salt level and exposure time. When the plants were exposed to salt stress for 10 days, two new POD isozymes were found, Rm0.26 (Rm, relative mobility of enzyme to dye) in Gebeina and Rm0.45 in Quzhou. Both isozymes disappeared after 20 days of salt stress, but Rm0.26 appeared again 30 days after the stress. Two new SOD isozymes of Rm0.19 and Rm0.46 were found in Gebeina when exposed to NaCl for 10 days, but only Rm0.46 in Quzhou. As the time of salt stress extended, more new SOD isozymes were detected, Rm0.35 in both genotypes in all different salt treatments and Rm0.48 in Gebeina under 200 mM NaCl stress. At 30 days after the stress, all the new SOD isozymes disappeared except for Rm0.48 in Gebeina under 200 mM NaCl stress. The results suggest that the increased POD and SOD activities could be partly due to the formation of some new isozymes and the tolerant variety had better ability to form new isozymes to overcome salt stress.
EN
Plant growth, photosynthetic parameters, chloroplast ultrastructure, and the ascorbate-glutathione cycle system in chloroplasts of self-grafted and rootstock-grafted cucumber leaves were investigated. Grafted plants were grown hydroponically and were exposed to 0, 50, and 100 mM NaCl concentrations for 10 days. Under NaCl stress, the hydrogen peroxide (H₂O₂) content in cucumber chloroplasts increased, the chloroplast ultrastructure was damaged, and the gas stomatal conductance, intercellular CO₂ concentration, as well as shoot dry weight, plant height, stem diameter, leaf area, and leaf relative water content were inhibited, whereas these changes were less severe in rootstock-grafted plants. The activities of ascorbate peroxidase (APX; EC 1.11.1.11), glutathione reductase (GR; EC 1.6.4.2), and dehydroascorbate reductase (DHAR EC 1.8.5.1) were higher in the chloroplasts of rootstock-grafted plants compared with those of self-grafted plants under 50 and 100 mM NaCl. Similar trends were shown in leaf net CO₂ assimilation rate and transpiration rate, as well as reduced glutathione content under 100 mM NaCl. Results suggest that rootstock grafting enhances the H₂O₂-scavenging capacity of the ascorbate–glutathione cycle in cucumber chloroplasts under NaCl stress, thereby protecting the chloroplast structure and improving the photosynthetic performance of cucumber leaves. As a result, cucumber growth is promoted.
EN
The construction industry has played an important role in reducing carbon emissions. Various policies have been implemented to stimulate construction enterprises to reduce carbon emissions, but the effects of emission reduction are not obvious, for they do not directly benefit the enterprises. This paper employs a modified Shapley value method to study benefit allocation in a construction supply chain considering carbon emissions. Four correction factors are proposed for modifying the initial allocation, namely the contribution rate of inputs, the risk-sharing coefficient, the degree of cooperation and the contribution rate of carbon emissions. We analyze carbon emissions based on an illustrative example of a concrete supply chain consisting of a cement manufacturer, a concrete manufacturer and a construction enterprise, and present our findings. First, the enterprises intend to cooperate to achieve the greatest benefit, and second, the benefit allocation is greatly affected by carbon emissions. Participants that produce more carbon emissions have higher carbon tax costs, which reduce profits. Further suggestions are also presented, which may help enterprises reduce carbon emissions. And policy makers should arrive at a suitable level of carbon tax to promote the smooth progress of projects and to improve the emission reduction effect.
EN
Background. Half-smooth tongue sole, Cynoglossus semilaevis Günther, 1873, a marine teleost, is an important aquaculture species of great economic value. In recent years, its farm production increase coincided, however, with the number of reported cases of bacterial diseases. Further understanding of its immune response to bacterial pathogens can provide more information on pathogenesis and how to prevent disease using immune-related strategy. Peptidoglycan (PGN) recognition proteins (PGRPs) play important roles in the innate immunity against bacterial infection. In the presently reported study, a long type PGRP in half-smooth tongue sole (csPGRP-L) was cloned, and its sequence features, PGN binding ability, and mRNA expressions in different tissues after bacterial infection were also analyzed. Materials and Methods. The full length of csPGRP-L cDNA was obtained by RT-PCR and RACE-PCR method, and its sequence features were analyzed by multiple sequence alignment and phylogenetic tree. Meanwhile, its 3-D structure and PGN binding ability were analyzed by comparative modelling and molecular docking methods. Furthermore, the expressions of csPGRP-L in different tissues of healthy fish and fish infected with Streptococcus dysgalactiae were examined using quantitative real-time PCR method. Results. The full length of csPGRP-L cDNA was 1509 bp (GenBank accession No. HQ909441), with a 1446 bp of open reading frame (ORF) encoding 481 amino acids (aa), which possessed several conserved PGRP family features, e.g., a typical PGRP domain at its C-terminal, 3-D structure. Molecular docking showed that the csPGRP-L also possessed the PGN-binding ability. csPGRP-L was constitutive expressed in all the selected tissues from healthy fish and following S. dysgalactiae infection its expression was up-regulated in a tissue-specific expression pattern. Conclusion. The gene we cloned was exactly the homologue of vertebrates’ long type PGRP in half-smooth tongue sole which was confirmed by several analyses and the up-regulation of csPGRP-L after bacterial infection suggest that csPGRP-L plays important role in antibacterial and anti-infective action.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.