Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 45
3-21
EN
Firstly, a contraction-free sequent system G4np for Nelson’s paraconsistent 4-valued logic N4 is introduced by modify- ing and extending a contraction-free system G4ip for intuitionistic propositional logic. The structural rule elimination theorem for G4np can be shown by combining Dyckhoff and Negri’s result for G4ip and an existing embedding result for N4. Secondly, a resolution system Rnp for N4 is introduced by modifying an in- tuitionistic resolution system Rip, which is originally introduced by Mints and modified by Troelstra and Schwichtenberg. The equivalence between Rnp and G4np can be shown. Thirdly, a typed lambda-calculus for N4 is introduced based on Prawitz’s natural deduction system for N4 via the Curry-Howard correspondence. The strong normalization theorem of this calculus can be proved by using Joachimski and Matthes’ proof method for intuitionistic typed lambda-calculi with premutative conversions.
2
Content available remote A Paraconsistent Linear-time Temporal Logic
63%
EN
Inconsistency-tolerant reasoning and paraconsistent logic are of growing importance not only in Knowledge Representation, AI and other areas of Computer Science, but also in Philosophical Logic. In this paper, a new logic, paraconsistent linear-time temporal logic (PLTL), is obtained semantically from the linear-time temporal logic LTL by adding a paraconsistent negation. Some theorems for embedding PLTL into LTL are proved, and PLTL is shown to be decidable. A Gentzentype sequent calculus PLT! for PLTL is introduced, and the completeness and cut-elimination theorems for this calculus are proved. In addition, a display calculus äPLT! for PLTL is defined.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.