Eco-friendly synthesis of ethyl 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate (4) ligand (L) using microwave irradiation technique was described. The structure of thioxoimidazolidine derivative ligand compound has been established based on different types of analyses such as infrared, 1H-NMR, 13C-NMR, and mass spectra as well as elemental analysis. The copper, cobalt, and nickel(II) complexes with molecular for-mula [M(L)(H2O)4]Cl2 (where M = Co(II), Ni(II), and Cu(II), L = thioxoimidazolidine derivative ligand), have been prepared and well-characterized using microanalytical, conductivity measurements, magnetic, spectroscopic, and physical analyses. Upon the outcome results of analyses, the stoichiometry of the synthesized complexes is 1:1 (M:L). The molar conductance values concluded that the behavior of metal complexes was electrolytes. The 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate chelate acts as a monovalent bidentate fashion via nitrogen and oxygen atoms of both thioxoimidazolidine and propanoate ester moieties. The geometric structures of the synthesized metal complexes are an octahedral confi guration based on spectroscopic and magnetic moment studies. The thermogravimetric assignments deduced that the presence of four coordinated water molecules. The synthesized copper(II), cobalt(II), and nickel(II) complexes were biologically checked against G+ and G- bacteria and two species of fungi (Aspergillus Nigaer, and Penicillium Sp.).
Herein, the photocatalytic degradation of the Congo Red (CR) and Crystal Violet (CV) dyes in an aqueous solution were discussed in the presence of an indium(III) oxide (In2O3) as optical catalyst efficiency. The caproate bidentate indium(III) precursor complex has been synthesized and well interpreted by elemental analysis, molar conductivity, Fourier transform infrared (FT-IR), UV-Vis, and thermogravimetric (TGA) with its differential thermogravimetric (DTG) studies. The microanalytical and spectroscopic assignments suggested that the associated of mononuclear complex with 1:3 molar ratio (M3+:ligand). Octahedral structure is speculated for this parent complex of the caproate anion, CH3(CH2)4COO− ligand. The In2O3 NPs with nanoscale range within 10–20 nm was synthesized by a simple, low cost and eco-friendly method using indium(III) caproate complex. Indium oxide nanoparticles were formed after calcination of precursor in static air at 600°C for 3 hrs. The structural, grain size, morphological and decolorization efficiency of the synthesized NPs were characterized using the FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analyses. It was worthy mentioned that the prepared In2O3 NPs showed a good photodegradation properties against CR and CV organic dyes during 90 min.
Trimethoprim drug (TMP) complexes of copper (II), cobalt (II), and nickel (II) were prepared and discussed by using elemental analysis (C, H, N analysis), magnetic, molar conductance, FTIR, Raman spectroscopy, electron spin resonance (ESR) and UV-vis spectroscopy analyses. TMP drug coordinated as a tridentate ligand towards the respected three metal ions through two nitrogen atoms of amino groups and nitrogen atom of pyrimidine ring which flanked between –NH2 groups, these assignments confirmed by spectroscopic, magnetic, ESR and thermogravimetric analyses with formulas [Cu(TMP)(H2O)3]Cl2, [Co(TMP)(H2O)3]Cl2 and [Ni(TMP) (H2O)]Cl2. Copper (II) and cobalt (II) complexes have an octahedral geometrical structure included one TMP molecule, three coordinated water molecules and two uncoordinated chlorine atoms while, nickel(II)–TMP complex has a tetrahedral geometric configuration that involved one TMP molecule, one coordinated water molecule and two uncoordinated chlorine atoms. The activation energies and other kinetic thermodynamic parameters were estimated based on the employed of the Coats-Redfern and Horowitz-Metzger equations. The nano–structured form of the synthesized TMP complexes was confirmed dependent on the transmission electron microscopy (TEM).
In this study, we successfully synthesized a pyrazole derivative, specifi cally 4-phenylpiperidin-4-ol substituted pyrazole (CHP), through the reaction of Grignard reagents in combination with pyrazole. This newly synthesized molecule was subjected to a comprehensive evaluation for both its photophysical and biological applications. Notably, CHP exhibited promising invitro antifungal and antibacterial activities, primarily attributed to the presence of the 4-phenylpiperidin-4-ol moiety and resulting component contributed to an enhanced absorption rate of lipids, thereby improving the pharmacological activity of CHP. This correlation between structure and function was further supported by the outcomes of structure-activity relationship studies. Additionally, we conducted in silico studies to examine the molecular interactions of the synthesized molecule with key proteins, including DNA Gyrase, Lanosterol 14 α-demethylase, and KEAP1-NRF2. The results unveiled robust binding interactions at specific sites within these proteins, indicating potential therapeutic relevance. Furthermore, the photophysical properties of the synthesized compounds were thoroughly investigated using the ab-initio technique. This involved the determination of ground state optimization and HOMO-LUMO energy levels, all calculated with the DFT-B3LYP-6-31G(d) basis set. The assessment of the theoretically estimated HOMO-LUMO value provided insights into the global chemical reactivity descriptors, revealing that the synthesized molecule boasts a highly electronegative and electrophilic index. Taken together, our findings suggest that pyrazole derivatives with 4-phenylpiperidin-4-ol substitutions exhibit promising applications in both photophysical and biological contexts.
The main interest now is the development of metallic or inorganic-organic compounds to prepare nanoparticle materials. The use of new compounds could be beneficial and open a new method for preparing nanomaterials to control the size, shape, and size of the nanocrystals. In this article, the thermal decomposition of [M2(o-tol)2(H2O)8]Cl4 (where o-tol is ortho-tolidine compound, M = Ni2+, Co2+, Cu2+) new precursor complex was discussed in solid-state conditions. The thermal decomposition route showed that the synthesized three complexes were easily decomposed into NiO, Co3O4 and CuO nanoparticles. This decomposition was performed at low temperatures (~600°C) in atmospheric air without using any expensive and toxic solvent or complicated equipment. The obtained product was identified by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). FT-IR, XRD and EDX analyses revealed that the NiO nanoparticles exhibit a face-centered-cubic lattice structure with a crystallite size of 9–12 nm. The formation of a highly pure spinel-type Co3O4 phase with cubic structure showed that the Co3O4 nanoparticles have a sphere-like morphology with an average size of 8–10 nm. The XRD patterns of the CuO confirmed that the monoclinic phase with the average diameter of the spherical nanoparticles was approximately 9–15 nm.
Co(II), Ni(II) and Cu(II) decxycholate complexes are interesting due to their biologically active and deliberate interest in the research due to their coordination properties. The microanalytical ‘elemental analysis’, molar conductivity, (infrared and Raman) spectroscopy, thermal analyses (TGA/DSC), UV-vis spectra, and ESR for copper(II) decxycholate complex investigations were performed in the structural assignments of Co(II), Ni(II) and Cu(II) decxycholate complexes. Reaction of the sodium deoxycholate ligand (C24H39O4Na) with three transition metal ions form the complexes of formulae, [M(C24H39O4)2(H2O)2] . xH2O where M = Co(II), Ni(II) and Cu(II) where x = 2 for Cu(II) and x = 4 in case of M = Co(II) or Ni(II) metal ions. The FTIR spectra of the complexes show that decxycholate molecule is present as bidentate ligand. Molecular docking utilizing to additionally examine the interaction of COVID-19 (6LU7) with different complexes of deoxycholic acid with Co(II), Ni(II) and Cu(II). Furthermore, in the case of Co(II) deoxycholate complex, the probe is surrounded by amino residues Met235, Pro241, Glu240, Pro108, Gln110, Phe294, and Ile152. The probe molecule of Ni(II) deoxycholate complex is sited close to amino acids Tyr126, Tyr239, Leu287, Leu272, and Lys137. For, Cu(II) deoxycholate complex, the residues of amino acids comprise of Pro132, Pro108, Gln110, Gly109, Ile200, Asn203, Val202, His246, Pro293 and Tyr154. The binding energy was determined from the docking reads for Co(II)–6LU7, Ni(II)–6LU7 and Cu(II)–6LU7 deoxycholate compounds were found to be −446.99, −500.52, −398.13 kcal mol−1 individually.
Morpholine is an interesting moiety that used widely in several organic syntheses. The intermolecular charge-transfer (CT) complexity associated between morpholine (Morp) donor with (monoiodobromide “IBr”, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone “DDQ”, 2,6-dichloroquinone-4-chloroimide “DCQ” and 2,6-dibromoquinone-4-chloroimide “DBQ”) π–acceptors have been spectrophotometrically investigated in CHCl3 and/or MeOH solvents. The structures of the intermolecular charge-transfer (CT) were elucidated by spectroscopic methods like, infrared spectroscopy. Also, different analyses techniques such as UV-Vis and elemental analyses were performed to characterize the four morpholine [(Morp)(IBr)], [(Morp)(DDQ)], [(Morp)(DCQ)] and [(Morp)(DBQ)] CT-complexes which reveals that the stoichiometry of the reactions is 1:1. The modified Benesi-Hildebrand equation was utilized to determine the physical spectroscopic parameters such as association constant (K) and the molar extinction coefficient (ε).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.