Purpose: Analytical determination of impact velocity for different combination of target and projectile materials is the objective of this paper. Design/methodology/approach: The penetration efficiency is maximum when the interaction between the projectile and target is hydrodynamic. Considering zero strength for target and projectile the hydrodynamic impact velocities are predicted using hydrodynamic equation of state. Findings: The hydrodynamic equation being an indeterminate equation is solved using interface theory (briefed in the appendix). The indeterminate Johnson-Cook (JC) model and Steinberg-Guinian (SG) model are also solved using interface theory to predict the influence of static strength of projectile and thermal softening effects. It is inferred that the penetration efficiency decreases with increasing static strength of target and also due to thermal softening of the projectile. In the process the plastic strain, the strain rate and the increase in temperature during impact are theoretically predicted. The segmented projectiles have less/more penetration efficiency than the monolithic impactors and hence require higher/lower impact velocities nearing to hydrodynamic state. Research limitations/implications: The analytical results obtained are in fair agreement with experimental results obtained in the reviewed literatures. Some contrasts are also observed. Originality/value: The paper present the analytical study on the optimal ballistic performance using interface theory.