Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Some solutions are obtained for a class of singular semilinear elliptic equations with critical weighted Hardy-Sobolev exponents by variational methods and some analysis techniques.
EN
We establish the existence of at least three weak solutions for the (p1,…,pₙ)-biharmonic system ⎧$Δ(|Δu_{i}|^{p−2}Δu_{i}) = λF_{u_{i}}(x,u₁,…,uₙ)$ in Ω, ⎨ ⎩$u_{i} = Δu_{i} = 0$ on ∂Ω, for 1 ≤ i ≤ n. The proof is based on a recent three critical points theorem.
EN
We study the following singular elliptic equation with critical exponent ⎧$-Δu = Q(x)u^{2*-1} + λu^{-γ}$ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where $Ω ⊂ ℝ^{N}$ (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.
4
Content available remote On Kirchhoff type problems involving critical and singular nonlinearities
80%
EN
In this paper, we are interested in multiple positive solutions for the Kirchhoff type problem ⎧$-(a + b∫_{Ω} |∇u|²dx)Δu = u⁵ + λ u^{q-1}/|x|^{β}$ in Ω ⎨ ⎩ u = 0 on ∂Ω, where Ω ⊂ ℝ³ is a smooth bounded domain, 0∈Ω, 1 < q < 2, λ is a positive parameter and β satisfies some inequalities. We obtain the existence of a positive ground state solution and multiple positive solutions via the Nehari manifold method.
5
Content available remote Nontrivial solutions for a class of superquadratic elliptic equations
80%
EN
Using a version of the Local Linking Theorem and the Fountain Theorem, we obtain some existence and multiplicity results for a class of superquadratic elliptic equations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.