Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Abstract   Although the connections between Frege’s and Russell’s investigations are commonly known (Hylton 2010), however, there are some topics in the letters which do not seem to have been analysed until now: 1. Paradoxes formulated by Russell on the basis of Frege’s rules: a) „»ξ can never take the place of a proper name« I false proposition when ξ is a proposition”; b) “A function never takes the place of a subject”. A solution of this problem was based on reference/sense theory and on distinction between the first- and second-level names (Frege). 2. The inconsistency in Frege’s system may be avoided by introduction of: a) a new kind of objects called quasi-objects (Frege); b) logical types (Frege and Russell); c) mathematics without classes (Russell); d) some restrictions on domain of function (Frege). 3. Since an inconsistency is connected with a class what is class? In one of the letters Frege compared a class to a chair which is composed of atoms. It seems to be similar to collective understanding of a set (Stanisław Leśniewski). 4. Russell doubted that the difference between sense and reference of expressions is essential. Hence, Frege found some additional reasons to distinguish them: semiotic, epistemological, from identity, from mathematical practice. This discussion can be seen as a next step in developing the theory of description by Bertrand Russell.
PL
In this paper I will focus on Frege’s six crucial claims on numbers. I begin with indicating the reasons for his interest in this topic and conclude with a reflection on the role of the history of mathematics in the practice of philosophy. Frege believed that the study on numbers is a common task for both philosophers and mathematicians. In this article, priority is given to the philosophical aspect.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.