Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Nr 4 (42)
5--18
PL
Przedstawiono historię dotyczącą ustalania wartości NDS w Polsce. Omówiono system ustalania wartości NDS dla środowiska pracy w Polsce. Pełne dokumentacje substancji chemicznych przygotowane w celu ustalenia standardów higienicznych są publikowane w kwartalniku Międzyresortowej Komisji „Podstawy i Metody Oceny Środowiska Pracy”.
EN
The paper presents the history of hygienic standards in Poland, as well as the current situation, and a system of establishing Polish MAC values for chemical compounds in the working environment. Full documentation is successively published in Polish in the Principles and Methods of Assessing the Working Environmental.
PL
Trimetyloamina (TMA) w temperaturze pokojowej jest gazem palnym o ostrym zapachu amoniakalnym i ryb oraz słonym smaku. Bardzo dobrze rozpuszcza się w wodzie. TMA jest dostępna jako bezwodny sprężony gaz lub roztwór wodny 25-; 30- lub 40-procentowy. TMA znalazła zastosowanie jako przyspieszacz w procesie wulkanizacji; w garbarstwie; przy produkcji mydła; jako rozpuszczalnik; w preparatyce farmaceutycznej i syntezie chemicznej (półprodukt do produkcji chlorku choliny); w chromatografii gazowej jako katalizator podczas oznaczania pochodnych karbofuranu; w przemyśle tekstylnym; jako czynnik ostrzegawczy do nawaniania gazu oraz czynnik flotacyjny. Łącznie z innymi aminami TMA jest naturalnym produktem rozkładu roślin azotowych. W formie sprzężonej TMA znajduje się w tkance zwierzęcej, szczególnie u ryb. Jest przekształcana do wolnej aminy podczas procesu gnicia. Głównym skutkiem ostrego działania TMA jest działanie drażniące i żrące. TMA może być szkodliwa dla ludzi narażonych drogą inhalacyjną, pokarmową lub przez skórę. Narządami krytycznymi w przypadku narażenia na TMA są oczy, skóra i układ oddechowy. Głównym skutkiem przewlekłego narażenia na pary TMA jest działanie drażniące na drogi oddechowe, skórę i oczy. U narażonych zawodowo na związek o stężeniu 48,5 mg/m3 (20 ppm) i większym obserwowano umiarkowane skutki działania drażniącego na układ oddechowy i oczy oraz skórę, charakteryzujące się kaszlem, nudnościami, zaczerwienieniem twarzy i oczu. Badani uskarżali się na uciążliwości spowodowane silnym amoniakalnym zapachem. U ludzi zatrudnionych przy produkcji i konfekcjonowaniu TMA, narażonych na związek o stężeniach 0,24 - 19,5 mg/m3 (średnio 12 mg/m3), nie obserwowano żadnych skutków zdrowotnych narażenia. Za podstawę wartości NDS trimetyloaminy przyjęto wartość minimalnego stężenia LOAEL = 48 mg/mJ (20 ppm), którego działanie drażniące na oczy, skórę i układ oddechowy obserwowano u ludzi narażonych zawodowo na ten związek. Przyjęto współczynnik niepewności dla różnic wrażliwości osobniczej A równy 2 i współczynnik D równy 2, który jest stosowany przy przejściu z wartości LOAEL do wartości NOAEL. Proponuje się ustalenie wartości NDS trimetyloaminy na poziomie 12 mg/m3 i wartości NDSCh na poziomie 24 mg/mJ (2 razy wartość NDS), ze względu na działanie drażniące związku. Nie ma podstaw do ustalenia wartości DSB timetyloaminy.
EN
Trimethylamine is a gas at ambient temperature and pressure which has a pungent, fishy, ammoniacal odor and saline taste. Ttimethylamine is available either as an anhydrous compressed gas or as a 25%, 30% and 40% aqueous solution. Trimethylamine has been used as an insect attractant, as a warning agent in natural gas, as a flotation agent, and as an intermediate in chemical synthesis. Trimethylamine is corrosive to human skin and eyes. A concentrated aqueous solution applied to intact human skin caused severe burning and hyperemia. The nasal, eye and skin irritation occured as a consequence of chronic exposure to trimethylamine vapors at concentration of 48.5 mg/m3, but such exposure at concentrations of 0.24-19.5 mg/m produced no observable irritation. Based on these human data the Experts Group for Chemical Agent established the 8-hour MAC (TWA) value of 12 mg/m3, and the MAC (STEL) value of 24 mg/m3.
|
|
tom Nr 3 (37)
61--69
PL
Benzenotiol jest białą lub jasnożółtą cieczą o zapachu czosnku. Jest stosowany w przemyśle chemicznym i farmaceutycznym do syntezy wielu związków chemicznych, w tym leków. W procesach syntezy organicznej jest stosowany jako rozpuszczalnik. Jest substancją czynną herbicydów i insektycydów. Benzenotiol wchłania się do organizmu człowieka drogami oddechowymi, drogą pokarmową oraz przez skórę. W warunkach przemysłowych drogami narażenia są głównie droga oddechowa i skóra. Zgodnie z rozporządzeniem ministra zdrowia z dnia 11 lipca 2002 r. w sprawie kryteriów i sposobu klasyfikacji substancji i preparatów chemicznych (DzU nr 140, poz. 1172) substancja jest klasyfikowana jako łatwo palna (R10) i toksyczna z przypisanymi zwrotami określającymi zagrożenie: działa toksycznie przez drogi oddechowe, w kontakcie ze skórą i po połknięciu (R23/24/25). Objawami zatrucia ostrego i przewlekłego benzenotiolem u ludzi i zwierząt jest działanie drażniące na oczy i skórę. U zwierząt doświadczalnych stwierdzono poważne uszkodzenie rogówki z upośledzeniem widzenia. Wartość NDS benzenotiolu w powietrzu na stanowisku pracy ustalono przez analogię do merkaptanu etylu, tj. na poziomie 2,0 mg/m³. Zaproponowana wartość NDS powinna zabezpieczyć przed działaniem drażniącym w warunkach narażenia zawodowego. Zaproponowano nieustalanie wartości NDSCh benzonotiolu. Ze względu na fakt, że substancja wchłania się przez skórę (LD50s – 134 mg/kg) proponuje się oznakowanie jej literami „Sk”.
EN
Benzenethiol is a colorless liquid with an offensive, garlic-like odor. An odor threshold of 0,00094 ppm has been reported. It is flammable and a dangerous fire risk. Benzenethiol is used as a chemical intermediate, solvent, and mosquito larvicide. Benzenethiol has caused irritation of the mucous membranes of the lips, mouth, and nose in humans and animals. Benzenethiol can cause severe dermatitis, headaches, and dizziness. The MAC of 2 mg/mJ is based on analogy with a similar but more toxic compound, ethyl mercaptan. This limit would protect workers from significant risks of CNS effects, other systemic injuries, and skin irritation potentially associated with exposure to benzenethiol above the MAC. At this time, there are no bases for establishing a STEL Considering benzenethiol skin absorption in the liquid and vapour form we suggest additional notation (Sk).
|
2001
|
tom Nr 3 (29)
185--196
PL
Octan izopentylu jest jednym z izomerów octanu n-pentylu. Octan izopentylu jest bezbarwną cieczą o charakterystycznym bananowym zapachu stosowaną jako rozpuszczalnik nitrocelulozy, celuloidu, żywic, tłuszczów, wosków oraz używaną jako substancja aromatyczna w przemyśle cukierniczym i mydlarskim, a także w przemyśle perfumeryjnym. Octan izopentylu dobrze się wchłania przez drogi oddechowe i z przewodu pokarmowego. Może wchłaniać się również przez nieuszkodzoną skórę. W organizmie ulega hydrolizie do alkoholu izopentylu i kwasu octowego. Pary octanu izopentylu działają drażniąco na śluzówki oczu oraz na błonę śluzową górnych dróg oddechowych. Działanie drażniące na oczy wykazano u ludzi, kiedy związek podawano przez 3 ÷ 5 min, o stężeniu 1596 mg/m³. Narażenie drogą inhalacyjną powoduje ponadto senność, bóle głowy, ból gardła i zmęczenie. Większe stężenia octanu izopentylu wykazują działanie narkotyczne, a także mogą powodować zaczerwienienie i suchość skóry. Na podstawie wyników badań na zwierzętach wykazano także działanie drażniące par i postaci ciekłej octanu izopentylu na oczy. Wartość NDS octanu izopentylu ustalono na podstawie wartości RD50 dla tego związku, którą na podstawie wyników badań na myszach ustalono na poziomie 5612 mg/m³. Dla substancji o działaniu drażniącym wartość NDS może znajdować się w przedziale od 0,01 do 0,1 RD50, a wartość NDS w przedziale od 56,12 do 561,2 mg/m³. Ze względu na podobną siłę działania drażniącego octanu izopentylu i octanu n-pentylu sugeruje się przyjęcie takiej wartości NDS octanu izopentylu, jaka obowiązuje aktualnie w Polsce dla octanu n-pentylu, tj. na poziomie 250 mg/m³. Wartość ta mieści się w powyższym przedziale i jest zbliżona do wartości normatywu obowiązującego w innych państwach, w tym również w Unii Europejskiej. Wartość NDSCh proponuje się ustalić na poziomie 500 mg/m³ (dwa razy wartość NDS) ze względu na działanie drażniące związku.
EN
Isoamyl acetate is an isomer of pentyl acetate. Isoamyl acetate is a colorurless, flammable liquid with a banana or pear-like odour. Isoamyl acetate is employed as a solvent and is used in perfumes and flavourings. Banana oil (pear oil), a commercial mixture of amyl acetate isomers, has found wide use as a solvent in lacquers and other products containing cellulose esters. The acute toxicity of isoamyl acetate for laboratory animals is low by all routes of administration. The subcutaneous LD5o for rabbit is 17500 mg/kg, and the oral LD50 for the rat is 16600 mg/kg. The liquid and vapour phases of isoamyl acetate are iritating to the eyes, skin and mucous membranes. Narcotic effects occur at high concentrations. It probably does not accumulate. Animal experiments suggest that isoamyl acetate readily reacts with water in the body to form isoamyl alcohol and acetic acid, which are excreted in the urine. In setting the MAC value, the results of an acute irritation study (RD50 concentration which produces a 50% reduction in breath rate in mice exposed for 10 min. was 5612 mg/m3) were considered. Because of the above data, the MAC value for isoamyl acetate was established at 250 mg/m3 and the value of STEL at 500 mg/m3.
PL
1,4-Dichlorobenzen jest ciałem stałym o budowie krystalicznej, bezbarwnym lub białym, o zapachu kamfory, ulegającym sublimacji. Jest stosowany jako insektycyd (głównie w środkach przeciwmolowych), fumigant, a także jako składnik środków dezodoryzujących stosowanych do pomieszczeń oraz odświeżaczy stosowanych w kontenerach na śmieci. W syntezie chemicznej jest stosowany do produkcji siarczku polifenylenu, 1,2,4 trichlorobenzenu, 2,5-dichloroaniliny oraz wielu barwników. Ma również zastosowanie w przemyśle farmaceutycznym. W warunkach narażenia zawodowego 1,4-di-chlorobenzenwchłania się do organizmu głównie przez drogi oddechowe. Ma niewielką toksyczność ostrą. Skutki działania przewlekłego na ludzi obejmują: działanie drażniące na oczy i błony śluzowe górnych dróg oddechowych, pogorszenie parametrów funkcji płuc, zaburzenia funkcji nerek i wątroby. W badaniach na zwierzętach w warunkach narażenia przedłużonego i przewlekłego na 1,4-dichlorobenzen per os zmiany obserwowano głównie w wątrobie oraz u szczurów samców w nerkach. Skutkiem krytycznym przewlekłego narażenia na 1,4-dichlorobenzen drogą inhalacyjną było działanie drażniące objawiające się zmianami w nabłonku jamy nosowej. Nie wykazano istotnego potencjału genotoksycznego 1,4-dichlorobenzenu. W badaniach mutagenności zarówno w warunkach in vitro, jak i in vivo, w większości eksperymentów uzyskano wyniki ujemne. Stwierdzono działanie rakotwórcze 1,4-di-chlorobenzenu na zwierzęta. Po podaniu dożołądkowym u myszy obu płci obserwowano głównie nowotwory wątroby, a u szczurów samców – gruczolakoraki kanalików nerkowych. Za powstawanie nowotworów nerek u szczurów samców narażonych na 1,4-dichlorobenzen jest odpowiedzialny specyficzny niegenotoksyczny mechanizm, nieistotny w przypadku ludzi. Najbardziej istotnymi zmianami nowotworowymi u myszy obu płci stwierdzonymi w wyniku eksperymentu inhalacyjnego były nowotwory wątroby (raki i gruczolaki wątrobowo komórkowe, mięsaki histiocytarne wątroby). Mechanizm powstawania u myszy nowotworów wątroby po podaniu 1,4 dichlorobenzenu drogą pokarmową lub inhalacyjną nie jest dokładnie wyjaśniony, ale na podstawie wyników badań wykazano progowy charakter tego skutku.W badaniach dwupokoleniowych na szczurach narażanych na 1,4-dichlorobenzen per os lub drogą inhalacyjną nie stwierdzono jego wpływu na funkcje rozrodcze zwierząt. 1,4-Dichlorobenzen nie działałem briotoksycznie, fetotoksycznie ani teratogennie. Dla 1,4-dichlorobenzenu zaproponowano wartość NDS wyprowadzoną z wartości NOAEL 10 mg/kg mc./dzień uzyskaną w badaniach na psach, którym związek podawano per os(w kapsułkach) przez 52 tygodnie. Skutkiem krytycznym było działanie hepatotoksyczne substancji. Po uwzględnieniu współczynników niepewności zaproponowano wartość NDS na poziomie 12 mg/m3. Z uwagi na występowanie stężeń pikowych 1,4-dichlorobenzenu w środowisku pracy oraz działanie drażniące zaproponowano ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 3 razy NDS, czyli 36 mg/m3 Brak jest ilościowych danych dotyczących wchłaniana 1,4-dichlorobenzenu przez skórę, ale na podstawie wyników modelowania oceniono, że wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową, dlatego zaproponowano notację„skóra”. Ze względu na działanie drażniące zaproponowano również notację„I”. Dostępne dane nie są wystarczające do ustalenia wartości dopuszczalnej w materiale biologicznym (DSB).
EN
1,4-Dichlorobenzene is a solid crystalline substance, colorless or white, with camphor-like odour. It sublimes at room temperature. It is used as insecticide (mainly in the mothballs), as a fumigant and as a component of indoor deodorants and air-fresheners used in dumpsters. 1,4-Dichlorobenzene is used in the synthesis of polyphenylene sul fide,1,2,4trichlorobenzene, 2,5-dichloroaniline and dyes. It is also used in pharmaceutical industry.1,4-Dichlorobenzene is absorbed into the body mainly by inhalation. It has low acute toxicity. Chronic effects in humans include irritation to eyes and mucous membranes of the upper respiratory tract, impaired lung function parameters, impaired kidney and liver function.In prolonged and chronic animal studies changes were observed mainly in a liver. In male rats changes were also observed in kidneys. After chronic exposure to 1,4-dichlorobenzene, changes due to irritation were observed in epithelium of the nasal cavity.1,4-Dichlorobenzene has no significant genotoxic potential. Most in vitro and in vivo mutagenicity studies were negative.1,4-Dichlorobenzene was carcinogenic to animals. Liver tumors were observed in the male and female mice after oral administration of 1,4-dichlorobenzene and after inhalation. The mechanism of liver tumor in mice after administration of 1,4-dichlorobenzene by ingestion or inhalation is not exactly clear but studies indicate the threshold nature of this effect. Adenocarcinomas of the renal tubule were observed in male rats after oral administration of 1,4-dichlorobenzene. Specific genotoxic mechanism, irrelevant for humans, is responsible for kidney tumors in male rats exposed to 1,4-dichlorobenzene.1,4-Dichlorobenzene is not embryotoxic, teratogenic or fetotoxic. There was no impact on reproductive functions of animals in the two-generation study in rats exposed to 1,4-dichlorobenzene by ingestion or by inhalation.A critical effect for exposure to 1,4-dichlorobenzene is hepatotoxic activity. Oral administration of 1,4-dichlorobenzene (in capsules) in dogs for 52 weeks caused changes in liver and NOAEL value obtained from this study was 10 mg/kg/day. On the basis of this NOAEL value, after taking into account uncertainty factors, the MAC (TWA) value of 12 mg/m3and STEL of 36 mg/m3(3 times NDS) were recommended.There is no quantitative experimental data on skin absorption of 1,4-dichlorobenzene, but on the basis of modeling data the “Skin” notation was added because absorption of substances through the skin can be as important as inhalation. It is recommended to label the substance with symbol “I” (irritant).
PL
Fenylometanol jest najprostszym związkiem z grupy alkoholi aromatycznych. W temperaturze pokojowej jest przezroczystą, bezbarwną cieczą o lekkim zapachu, charakterystycznym dla węglowodorów aromatycznych oraz o ostrym i piekącym smaku. Występuje w olejku jaśminowym, hiacyntowym i ylang-ylang, a na skalę przemysłową jest otrzymywany syntetycznie. Fenylometanol znalazł zastosowanie w różnorodnych gałęziach przemysłu; 60% światowej produkcji alkoholu benzylowego wykorzystuje przemysł tekstylny w procesach barwienia nylonu. Związek powszechnie jest stosowany jako środek zapachowy i konserwujący w przemyśle kosmetycznym, spożywczym i farmaceutycznym, a także jako wywoływacz w fotografice, składnik preparatów owadobójczych i repelentów w rolnictwie oraz w wielu gałęziach przemysłu jako rozpuszczalnik. W przemyśle chemicznym stanowi substrat do syntezy estrów i eterów benzylowych. W dostępnym piśmiennictwie nie ma doniesień o ostrych ani o przewlekłych zatruciach ludzi w warunkach narażenia zawodowego. Informacje podawane przez Międzynarodowy Program Bezpieczeństwa Chemicznego (IPCS) oraz Międzynarodową Organizację Pracy (ILO) wskazują na działanie drażniące i narkotyczne związku jako efekt krytyczny tej substancji. Narażenie inhalacyjne na pary lub aerozole fenylometanolu może spowodować podrażnienie oczu oraz błon śluzowych nosa i gardła, z takimi objawami, jak: kaszel, ból gardła i zaburzenia oddychania. Spożycie dużych ilości fenylometanolu lub inhalacja par (brak danych liczbowych o dawkach lub stężeniach) może powodować nudności, wymioty, biegunkę, bóle i zawroty głowy oraz depresję ośrodkowego układu nerwowego. Fenylometanol działa drażniąco na oczy, może powodować niewielkie podrażnienie skóry, a liczne doniesienia wskazują na działanie uczulające alkoholu benzylowego na skórę. Wartości DL50 fenylometanolu po podaniu dożołądkowym wyznaczone przez różnych autorów dla różnych gatunków zwierząt są w granicach 1040 ÷ 3100 mg/kg m.c., ale w większości wypadków nie przekraczają jednak 2000 mg/kg m.c. Po podaniu dożołądkowym fenylometanolu psom obserwowano wymioty i działanie przeczyszczające, a letalne dawki powodowały u szczurów zaburzenia oddychania i chwiejny chód, co sugeruje działanie fenylometanolu na ośrodkowy układ nerwowy. Wartość CL50 dla szczura wynosi 4410 mg/m³/8 h, a żadnych objawów klinicznych nie obserwowano po narażeniu przez 6 h na fenylometanol, którego stężenie oszacowano na 270 mg/m³ (61 ppm), lub na pary fenylometanolu, znajdujące się w powietrzu przepuszczanym przez płuczkę, zawierającą fenylometanol ogrzany do temperatury 100 ÷ 150 °C. Wartość DL50 dla królika po podaniu na skórę wynosi 2000 mg/kg m.c. Zgodnie z rozporządzeniem ministra zdrowia z dnia 3 lipca 2002 r. w sprawie wykazu substancji niebezpiecznych wraz z ich klasyfikacją i oznakowaniem (DzU nr 129, poz. 1110) fenylometanol jest zamieszczony w wykazie substancji niebezpiecznych i klasyfikowany jako substancja szkodliwa (Xn) z przypisanym zwrotem wskazującym zagrożenie R20/22 – „działa szkodliwie przez drogi oddechowe i po połknięciu”. Badanie toksyczności fenylometanolu po podaniu dożołądkowym w warunkach narażenia krótkoterminowego i przewlekłego przeprowadzono w ramach National Toxicology Program (NTP). Doświadczenia wykonano na dwóch gatunkach zwierząt: szczurach i myszach. Przeprowadzono eksperymenty: 16-dniowe, 13-tygodniowe i 2-letnie. Na podstawie wyników badań stwierdzono, że wartość NOAEL działania układowego alkoholu benzylowego wynosi 400 mg/kg m.c./dzień, a w doświadczeniu 2-letnim przeprowadzonym na szczurach nie zaobserwowano żadnych skutków narażenia. Nie stwierdzono także działania rakotwórczego fenylometanolu. Wyniki badań działania mutagennego fenylometanolu in vitro były w większości negatywne. Negatywny wynik uzyskano również w badaniu genotoksyczności in vivo. Działanie embriotoksyczne fenylometanolu obserwowano jedynie po dawkach toksycznych dla matek. Normatyw higieniczny fenylometanolu ustalono jedynie w Rosji, określając wartość NDSCh na poziomie 5 mg/m³ i stwierdzono, że substancja wchłania się przez skórę. W piśmiennictwie nie znaleziono danych ilościowych o skutkach narażenia inhalacyjnego ludzi, a dane, dotyczące zwierząt, pochodzą sprzed wielu lat i są zbyt mało wiarygodne, aby mogły posłużyć do obliczenia normatywów higienicznych. Proponowaną wartość NDS fenylometanolu obliczono, przyjmując za efekt krytyczny działanie układowe związku na podstawie wyników badań NTP. Za wartość NOAEL dla działania układowego fenylometanolu przyjęto dawkę 400 mg/kg m.c./dzień, po której w eksperymencie 2-letnim nie obserwowano u szczurów skutków narażenia. Po przyjęciu współczynników niepewności o wartościach: równej 2 dla współczynnika związanego z wrażliwością osobniczą, równej 2 dla wspólczynnika związanego z różnicami międzygatunkowymi oraz równej 3 dla współczynnika związanego z drogą podania inną niż inhalacyjna, obliczono wartość NDS fenylometanolu na poziomie 240 mg/m³. Ze względu na stosunkowo małe stężenie pary nasyconej fenylometanolu (około 880 mg/m³) oceniono, że istnieje małe prawdopodobieństwo wystąpienia w warunkach przemysłowych stężeń znacznie przekraczających wartość zaproponowanego NDS i w związku z tym uznano, że nie ma potrzeby ustalania wartości NDSCh fenylometanolu.
EN
Phenylmethanol (benzyl alcohol) is a clear, colorless liquid with a pleasant, aromatic odour and burning taste. It is widely used in the industry, mainly in the textile industry. It is employed in the manufacture of perfumes, pharmaceuticals, inks and dyestuffs. It is also widely used as a lacquer, wax and resin solvent, as a developer, as - preservative in injectable saline and other injectable drugs and as an int ermediate in organic synthesis. Phenylmethanol is classified as harmful by inhalation and if swallowed. Ingestion of large volumes is followed by vomiting, diarrhea and central nervous system depression. The aerosol or vapour may cause eye, nose and ±roat irritation (cough, sore throat), but there are no quantitative data and phenylmethanol is not classified as irritant. There is no evidence of carcinogenic activity of benzyl alcohol for mice and rats under the conditions of 2-vear gavage studies.ased on animal data no observed adverse effect level (NOAEL) after oral administration of phenylmethanol as established at 400 mg/kg for systemic symptoms. Based on this value The Expert Group for Chemical Agents established an 8-hour TWA value of 240 mg/m3. No STEL and BEI were recommended.
7
Content available N,N-Dimetyloformamid
63%
|
|
tom Nr 4 (66)
93--139
PL
N,N-Dimetyloformamid (DMF) jest bezbarwną, higroskopijną cieczą o słabym zapachu amin. Stosowany jest głównie jako rozpuszczalnik cieczy i gazów w syntezie organicznej oraz w petrochemii. Używa się go także jako rozpuszczalnika tuszu do drukarek, klejów oraz lakierów poliuretanowych stosowanych do wytwarzania sztucznej skóry. N,N-Dimetyloformamid jest wykorzystywany w procesie produkcji polimerów winylowych i akrylowych nisko- i wysokocząsteczkowych folii, włókien oraz powłok. W Polsce w 2007 r. na działanie N,N-dimetyloformamidu o stężeniu powyżej 10 mg/m3 (NDS) było narażonych 20 pracowników. Głównymi drogami narażenia na N,N-dimetyloformamid w warunkach pracy zawodowej są układ oddechowy i skóra. N,N-dimetyloformamid w 90% jest wchłaniany z dróg oddechowych. Współczynnik wchłaniania N,N-dimetyloformamidu po nałożeniu substancji w postaci ciekłej na skórę wynosi 9 mg/m2/h. Związek ten powoduje zmiany układowe w wyniku narażenia dermalnego (zaburzenia funkcji wątroby). Zaobserwowano również u ludzi subiektywne objawy działania drażniącego N,N-dimetyloformamidu (podrażnienie oczu oraz górnych dróg oddechowych). Charakterystycznym skutkiem działania N,N-dimetyloformamidu na ludzi jest nietolerancja alkoholu charakteryzująca się zaczerwienieniem twarzy, zawrotami głowy, nudnościami oraz uciskiem w klatce piersiowej. W badaniach prowadzonych na zwierzętach doświadczalnych N,N-dimetyloformamid wykazywał słabe działanie drażniące na skórę, działanie drażniące na oczy oraz działanie hepatotoksyczne. Związek nie wykazywał działania uczulającego. N,N-Dimetyloformamid ma właściwości embriotoksyczne oraz teratogenne po podaniu drogą inhalacyjną, dermalną oraz pokarmową. W licznych testach wykonywanych w warunkach in vitro i in vivo wykazano brak działania genotoksycznego dimetyloformamidu. N,N-Dimetyloformamid został zaklasyfikowany przez IARC do grupy trzeciej (brak podstaw do klasyfikacji substancji jako rakotwórcza dla ludzi). Za efekt krytyczny działania N,N-dimetyloformamidu przyjęto działanie toksyczne związku na wątrobę. Za podstawę do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) przyjęto wyniki badania na szczurach narażanych inhalacyjnie na działanie N,N-dimetyloformamidu o stężeniach: 0; 75; 300 lub 1200 mg/m3 przez 2 lata. Za wartość NOAEL związku przyjęto stężenie 75 mg/m3 i przy zastosowaniu odpowiednich współczynników niepewności otrzymano wartość 12,5 mg/m3. Zaproponowano przyjęcie wartości NDS N,N-dimetyloformamidu na poziomie zaproponowanym przez SCOEL, tj. 15 mg/m3 oraz ustalenie ze względu na działanie drażniące związku, wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 30 mg/m3. Ze względu na znaczne wchłanianie N,N-dimetyloformamidu przez skórę monitorowanie stężeń związku w powietrzu na stanowiskach pracy nie jest wystarczające do zapewnienia bezpiecznych warunków pracy. Wymagany jest również monitoring biologiczny. Na podstawie wyników badań pracowników narażonych na N,N-dimetyloformamid obliczono średnią wartość stężenia N-metyloformamidu w moczu odpowiadającą wartości NDS N,N-dimetyloformamidu. Proponowana wartość dopuszczalnego stężenia w materiale biologicznym (DSB) wynosi 15 mg N-metyloformamidu/ 1 moczu. N,N-Dimetyloformamid oznakowano literami: „Sk” (substancja wchłania się przez skórę), „Ft” (substancja działająca toksycznie na płód) oraz „I” (substancja o działaniu drażniącym).
EN
N,N-Dimethylformamide (DMF) is a colorless, hygroscopic liquid with a faint ammonia-like odor. It is predominately used as a solvent for liquids and gases in synthesis of fine chemicals, polyacrylonitrile fibre and in petrochemical industry. N,N-Dimethylformamide is also employed as a solvent in adhesives, printing inks and polyurethane coatings to artificial leather production. In Poland 20 workers were exposed to N,N-dimethylformamide in concentration above 10 mg/m3 (MAK) in 2007. Respiratory tract and skin are the major routes of occupational exposure to N,N- dimethylformamide. The uptake from the respiratory tract was 90%. Percutaneous absorption of N,N-dimethylformamide can occur. The absorption rate is 9 mg/cm2/h following dermal application of liquid substance. Systemic effects were observed after dermal exposure to N,N-dimethylformamide (liver failure). Subjective responses to N,N-dimethylformamide including eyes and upper respiratory tract irritation were observed in humans. Alcohol intolerance is a characteristic effect following exposure to this substance. Symptoms may include a sudden facial flush, tightness of the chest, dizziness and nausea. A slight to moderate skin and eye irritation and hepatotoxicity of N,N-dimethylformamide occured in animals studies. N,N-Dimethylformamide indicated no sensitization potential. Developmental toxicity and teratogenicity occurred in rats and rabbits in inhalation, oral or dermal administration studies and in mice following oral administration. N,N-Dimethylformamide did not show genotoxic potential in various test systems in vivo and in vitro. N,N-dimethylformamide is not classifiable as to its carcinogenicity to humans Group 3) according to The International Agency for Research on Cancer (IARC). Hepatotoxicity was assumed as a critical effect. In setting the exposure limit, the result of 2 years inhalation study in rats were considered. Based on NOAEL value of 75 mg/m3 and an appropriate uncertainty factors, a MAC value has been calculated at 12,5 mg/m3. A MAC value fo N,Ndimethylformamide was proposed to be established at the same level as OEL recommended by SCOEL, it means 15 mg/m3. STEL value was set at 30 mg/m3 considering irritation potential. Biological monitoring is highly recommended because of extensive dermal absorption. BEI was set at 15 mg N-methylformamide/l urine. Considering evidence on skin absorption additional determination with Sk letters was proposed. With regard to and fetotoxic effects of formamide in laboratory animals an Ft notation was considered. Considering irritation potential determination with I letter was proposed.
8
Content available Eter tert-butylometylowy
63%
|
|
tom Nr 3 (61)
51--74
PL
Eter tert-butylometylowy (MTBE) jest bezbarwną cieczą o nieprzyjemnym zapachu eteru stosowaną głównie w przemyśle petrochemicznym jako składnik benzyn podwyższający liczbę oktanów, a także w niektórych procedurach medycznych, np. do rozpuszczania kamieni żółciowych oraz w reakcjach i analizach chemicznych jako np. rozpuszczalnik w reakcjach polimeryzacji i eluent do chromatografii. Eter tert-butylometylowy ulega szybkiemu wchłanianiu z dróg oddechowych, przewodu pokarmowego i krwi, a nieco wolniej wchłania się przez skórę. Związek nie ulega kumulacji w organizmie, a jego większość jest wydalana w postaci niezmienionej, część może ulegać metabolizmowi i zostać wydalona w postaci innych związków: tert-butanolu, formaldehydu, kwasu mrówkowego i ditlenku węgla. Eter tert-butylometylowy jest zaliczany do substancji skrajnie łatwopalnych – F, R11 i działających drażniąco (Xi) na skórę (R38). U ludzi ostre narażenie na eter tert-butylometylowy o stężeniach nieprzekraczających 270 mg/m3 przez 3 h nie wywoływało żadnych poważnych zmian w stanie zdrowia. Podczas narażenia przewlekłego u pracowników narażanych na eter tert-butylometylowy o stężeniach 0,1 ÷ 98 mg/m3 oraz na inne substancje obecne w powietrzu środowiska pracy (brak danych na temat wielkości stężenia) obserwowano: podrażnienie oczu, błon śluzowych nosa, mdłości, bóle i zawroty głowy. Eter tert-butylometylowy powoduje zaburzenia ośrodkowego układu nerwowego, które objawiają się stanami narkotycznymi, niezbornością ruchową – ataksją, a także zaburzeniami oddychania. Ponadto eter działa drażniąco na: oczy, błony śluzowe dróg oddechowych i skórę. U myszy narażenie na pary eteru tert-butylometylowego o stężeniach nieprzekraczających 30 000 mg/m3 przez 1 h powodowało zależny od wielkości narażenia, spadek częstości oddychania. Wyliczona wartość RD50 związku wynosi 16 600 mg/m3. Na podstawie danych z toksyczności ostrej (6 h) i długoterminowej (13 tygodni) narażania szczurów F-344 na pary eteru tert-butylometylowego największym nietoksycznym stężeniem związku było stężenie wynoszące 2860 mg/m3. Eter tert-butylometylowy nie wykazuje działania mutagennego w komórkach bakterii i drożdży. Nie indukuje również efektów genotoksycznych w komórkach ssaków narażanych w wa-runkach in vitro i in vivo. Niektóre dane ujawniają słaby potencjał genotoksyczny eteru tert- -butylometylowego w obecności frakcji S9. Eter tert-butylometylowy działa rakotwórczo na zwierzęta. Związek indukował raka i gruczolaka nerek u samców szczurów F-344 narażanych na eter tert-butylometylowy o stężeniu 10 800 mg/m3 przez 105 tygodni oraz gruczolaka wątroby u samic myszy CD-1 narażanych na eter tert-butylometylowy o stężeniu 28 800 mg/m3 przez 18 miesięcy. Po podaniu dożołądkowym związku w dawce 250 lub 1000 mg/kg m.c. u samic szczurów Sprague-Dawley występował statystycznie istotny wzrost częstości białaczek i chłoniaków. Eter tert-butylometylowy wykazywał stosunkowo niski potencjał embrio- i fetotoksyczny oraz niewielki wpływ na rozród zwierząt laboratoryjnych. U szczurów i królików narażanych na eter tert-butylometylowy drogą inhalacyjną o stężeniach nieprzekraczających 28 800 mg/m3 związek działał głównie neurotoksycznie na ciężarne samice, natomiast nie wpływał toksycznie na płody zwierząt. Embriotoksyczne, fetotoksyczne i teratogenne działanie związku obserwowano u potomstwa samic myszy CD-1 narażanych na eter tert-butylometylowy o stężeniach 14 400 lub 28 800 mg/m3. Eter tert-butylometylowy o tych stężeniach powodował zmniejszenie liczby żywych implantacji w miocie, zmniejszenie odsetka męskich płodów oraz zmniejszenie masy ciała młodych i wzrost liczby rozszczepów podniebienia. Do ustalenia wartości NDS (najwyższego dopuszczalnego stężenia) eteru tert-butylometylowego wzięto pod uwagę wartość RD50 (dawka powodująca redukcję akcji oddechowej do 50% wartości należnej) wyznaczoną u myszy na poziomie 16 600 mg/m3. Na podstawie wartości RD50 wartość NDS eteru tert-butylometylowego mieści się w zakresie 166 1660 mg/m3. Postanowiono przyjąć stężenie 180 mg/m3 eteru tert-butylometylowego za wartość NDS związku. Z uwagi na łagodne działanie drażniące związku, obserwowane u ochotników narażanych na eter tert-butylometylowy o stężeniu 270 mg/m3 przez 3 h, przyjęto za wartość NDSCh (najwyższego dopuszczalnego stężenia chwilowego) związku stężenie 270 mg/m3. Normatyw oznakowano literą „I” (substancja o działaniu drażniącym).
EN
Methyl tertiary-buthyl ether (MTBE) is a colorless liquid. This substance produces irritation and transiet corneal injury to the eye, and it is an irritant of mucous membranes. Prolonged skin contact produces dermatitis. The proposed maximum exposure limit MAC (TWA) was calculated on the basis of the RD50 value of 16 600 mg/m3. The Expert Group for Chemical Agents recommended MAC of 180 mg/m3 and STEL of 270 mg/m3.
|
|
tom Nr 4 (26)
99--120
PL
Metoksychlor jest insektycydem z grupy węglowodorów chlorowanych i występuje w postaci białego lub bezbarwnego, krystalicznego proszku. Jest stosowany głównie w celu zwalczania insektów drzew owocowych, warzyw i zbóż, w postaci proszku do zawiesin (25- i 50-procentowych), preparatów pylistych (410-procentowych), aerozoli i preparatów emulsyjnych (24-procentowych). Narażenie na działanie metoksychloru może występować w czasie produkcji, formowania preparatów lub stosowania środków ochrony roślin. Z przedstawionych w niniejszym opracowaniu wyników badań działania toksycznego metoksychloru wynika, że pestycyd ten wykazuje działanie układowe a narządami krytycznymi są: nerki, wątroba i narządy układu rozrodczego. Na podstawie wyników badań doświadczalnych przeprowadzonych na szczurach wykazano, że metoksychlor jest związkiem działającym embriotoksycznie, teratogennie i obniżającym płodność. Unia Europejska nie klasyfikuje metoksychloru jako substancji niebezpiecznej. W IARC nie klasyfikuje się metoksychloru pod względem działania rakotwórczego u ludzi (grupa 3), a w przypadku zwierząt uważa się, że brak jest dostępnych danych potwierdzających jego działanie rakotwórcze. W NIOSH uważa się ten związek za potencjalny kancerogen zawodowy. Podstawę wyliczeń wartości NDS metoksychloru stanowiły wyniki badań z doświadczenia 8-tygodniowego przeprowadzonego na ludziach (ochotnikach), narażanych drogą doustną na metoksychlor. Otrzymana doświadczalnie wartość NOAEL dla ludzi narażanych wynosi 2,0 mg/kg/dzień. Proponuje się ustalić wartość NDS metoksychloru na poziomie 10 mg/m3 jak dla pyłu nietrującego przemysłowego. Wartość ta nie powinna stwarzać zagrożenia podczas narażenia przewlekłego. Nie ma przesłanek do ustalenia wartości NDSCh.
EN
Methoxychlor is a chlorinated hydrocarbon insecticide used for control of infestation affecting fruits, vegetabless, forage crops and livestock. Methoxychlor can be absorbed into the body by inhalation of its aerosol, through the skin and by ingested in large amounts. Animal tests show that this substance possibly causes toxic effects upon human reproduction.
|
|
tom Nr 3 (37)
125--148
PL
Glicerol należy do alkoholi wielowodorotlenowych. W temperaturze pokojowej jest przezroczystą, bezbarwną i prawie bezwonną, oleistą cieczą o słodkim smaku. Charakteryzuje się bardzo małą prężnością par: w temperaturze 25 °C stężenie pary nasyconej jest mniejsze niż 1 mg/m'’, a w temperaturze 50 °C wynosi około 11 mg/m3.Glicerol powstaje w wyniku hydrolizy tłuszczów jako produkt uboczny przy produkcji mydła. Obecnie na skalę przemysłową otrzymuje się go metodami syntetycznymi. Glicerol znalazł szerokie zastosowanie w różnorodnych gałęziach przemysłu, m.in. w przemyśle chemicznym, farmaceutycznym, kosmetycznym, włókienniczym i spożywczym.Glicerol może być wchłaniany przez organizm drogą inhalacyjną (mgły glicerolu) oraz z przewodu pokarmowego. Przy narażeniu inhalacyjnym efektem krytycznym glicerolu jest działanie drażniące na błony śluzowe dróg oddechowych.Brakuje doniesień o ostrych zatruciach glicerolem w warunkach narażenia zawodowego. Dane, dotyczące szkodliwego działania glicerolu na ludzi, pochodzą z obserwacji pacjentów, którym podawano glicerol. Głównymi objawami ubocznymi spożycia dużych dawek glicerolu są: ból i zawroty głowy, nudności i wymioty, rzadziej - biegunka, zwiększone pragnienie, dezorientacja i hiperglikemia. Może wystąpić arytmia, obrzęk płuc i zastoinowa niewydolność serca. Glicerol, podany dożylnie, może wywołać: drgawki, porażenie, hemolizę, hemoglobinurię i niewydolność nerek. Kontakt nierozcieńczonej substancji z okiem powoduje silne uczucie pieczenia i łzawienie, nie stwierdzono natomiast uszkodzeń oka. Nie zaobserwowano żadnych skutków toksycznego działania glicerolu w badaniu na ochotnikach, którym podawano glicerol z pożywieniem w dawce 110 g/dzień przez 50 dni. Ostra toksyczność glicerolu u zwierząt laboratoryjnych jest mała; wartości DL50 - w przypadku podania drogą dożołądkową, dootrzewnową i dożylną - dla różnych gatunków zwierząt wahają się od kilku do kilkudziesięciu gramów na kilogram masy ciała. Znacznie mniejsze wartości DL50 wyznaczono przy podaniu podskórnym: około 100 mg/kg m.c. Glicerol wykazuje małą toksyczność ostrą po podaniu drogą dermalną. Podanie na skórę królików 18 700 mg/kg m.c. substancji nie spowodowało śmierci zwierząt. Bez względu na sposób podania głównym skutkiem narażenia ostrego jest stymulacja układu nerwowego. Letalne dawki powodowały takie objawy, jak: niepokój, niewielka sinica, obniżenie ciśnienia tętniczego krwi, przyspieszony a następnie zwolniony oddech, osłabienie, diureza, drżenie, zapaść, śpiączka i śmierć. Ponadto po podaniu podskórnym, a także w niektórych przypadkach po dożylnym lub dootrzewnowym obserwowano hemoglobinurię. W badaniach toksyczności krótkoterminowej i przewlekłej na zwierzętach nie stwierdzono działania układowego tej substancji. W 13-tygodniowym eksperymencie (podanie inhalacyjne) na szczurach wyznaczono wartość NOEL - 167 mg/nr1 (przy większych stężeniach obserwowano niewielką metaplazję nabłonka wyściełającego podstawę nagłośni, spowodowaną, zdaniem badających, słabym działaniem drażniącym glicerolu). Na podstawie wyników badań na zwierzętach można stwierdzić, że glicerol wykazuje słabe działanie drażniące na oczy i nie wykazuje działania drażniącego na skórę. Nie stwierdzono działania mutagennego, rakotwórczego, embriotoksycznego, teratogennego ani wpływu glicerolu na rozrodczość. Alkohol ten nie był klasyfikowany przez Międzynarodową Agencję Badań nad Rakiem (IARC) pod względem działania rakotwórczego. W Polsce nie ustalono dotychczas wartości normatywów higienicznych glicerolu. W większości państw przyjęto za wartość NDS 10 mg/m3. Należy podkreślić, że narażenie na pary glicerolu w środowisku pracy jest problemem drugorzędnym. Wynika to z właściwości fizykochemicznych substancji: ma ona bardzo małą prężność par, a stężenie pary nasyconej w temperaturze 25 °C wynosi 0,78 mg/m3. Potwierdza to także brak doniesień o zatruciach ludzi w warunkach przemysłowych, pomimo powszechnego stosowania tej substancji. W specyficznych warunkach, np. przy pracach związanych z rozpryskiwaniem ciekłego glicerolu lub podczas parowania rozgrzanego glicerolu z dużych powierzchni, istnieje możliwość powstawania aerozolu. Wykorzystując do obliczenia największego dopuszczalnego stężenia wartość NOEL (167 mg/m3) dla działania drażniącego glicerolu, wyznaczoną w 13-tygodniowym (podanie inhalacyjne) doświadczeniu na szczurach, otrzymano wartość NDS równą 21 mg/m3 (przyjęto współczynniki niepewności: związany z wrażliwością osobniczą - 2, związany z różnicami międzygatunkowymi - 2 oraz związany z przejściem z badań krótkoterminowych do przewlekłych - 2). Wartość ta jest mniej więcej 27-krotnie większa od wartości stężenia pary nasyconej glicerolu w temperaturze pokojowej. Aby wyeliminować możliwość powstawania uciążliwych warunków pracy w przypadku narażenia na mgły glicerolu (uczucie dyskomfortu, pogorszenie warunków widzenia itp.), proponuje się ustalenie wartości NDS glicerolu na poziomie 10 mg/mJ. Należy podkreślić, że jest to sytuacja bardzo podobna do sytuacji glikolu dietylenowego (NDS = 10 mg/m3), rozpatrywanej wcześniej przez zespół ekspertów. W tym ostatnim przypadku znaczne zanieczyszczenie środowiska pracy było również możliwe tylko podczas powstawania aerozoli. Ze względu na fakt, że przy stężeniach większych niż 10 mg/nr3 występuje uczucie dyskomfortu i pogorszenie warunków widzenia, nie ma podstaw do ustalenia wartości NDSCh glicerolu. Nie ma również podstaw do ustalenia wartości DSB glicerolu.
EN
Glycerol is a clear, colorless and almost odourless, slight volatile oily liquid with sweet taste. Glycerol is widely used as a solvent and as a component of paints, varnishes, printing inks and adhesives. It is also used as an intermediate in the farmaceutical and chemical industry and as a plastificator in the textile industry. Both acute and long-term toxicity is low. No carcinogenic, mutagenic and reproductive effects were documented. Based on animal data glycerol causes only slight eye irritation and it is not irritating to the skin. No observed effect level (NOEL) was established at 167 mg/mJ for the effects connected with irritation based on results of 13-week inhalation experiment on rats. Therefore The Expert Group of Chemical Agents established the 8-hour TWA value of 10 mg/nr1 for aerosol of glycerol. No STEL and BEI were recommended.
|
2003
|
tom Nr 1 (35)
145--159
PL
Sulfotep jest bladożółtą cieczą o zapachu czosnku. Jest to pestycyd fosforoorganiczny stosowany w szklarniach w celu zwalczania mszyc, drobnych pająków i innych owadów. W Polsce nie jest produkowany. Insektycyd ten wchłania się do organizmu człowieka drogą oddechową, pokarmową oraz przez skórę. W warunkach przemysłowych drogami narażenia są głównie droga oddechowa i skóra. Zgodnie z rozporządzeniem ministra zdrowia z dnia 3 lipca 2002 r. w sprawie wykazu substancji niebezpiecznych wraz z ich klasyfikacją i oznakowaniem, sulfotep jest klasyfikowany jako substancja bardzo toksyczna, której przypisano symbol T+ i oznaczono ją symbolem R27/28, co oznacza, że substancja działa bardzo toksycznie w kontakcie ze skórą i po połknięciu. Objawami zatrucia ostrego i przewlekłego sulfotepem u ludzi i zwierząt jest zahamowanie aktywności cholino- esterazy osocza, acetylocholinoesterazy erytrocytów i mózgu oraz zespół objawów charakterystycznych dla zatrucia związkami fosforoorganicznymi. Mechanizm działania toksycznego sulfotepu wynika z hamowania przez ten związek aktywności esterazy acetylocholinowej (AChE), co w konsekwencji prowadzi do nadczynności układu cholinergicznego. Sulfotep nie wykazuje działania mutagennego, embriotoksycznego, teratogennego i rakotwórczego. Wartość NDS sulfotepu w powietrzu na stanowisku pracy ustalono na podstawie wyników 12-tygodniowego badania inhalacyjnego na szczurach, w których wyznaczono wartość NOAEL na poziomie 1,94 mg/mJ. Wyliczoną na podstawie wyników tych badań wartość NDS równą 0,158 mg/mJ postanowiono zmniejszyć do 0,1 mg/m3, tj. do wartości, jaką ustalono w Unii Europejskiej. Wartość ta powinna zabezpieczyć przed wystąpieniem skutków długotrwałego narażenia na sulfotep (głównie zmniejszeniu aktywności cholinoesteraz) w warunkach narażenia zawodowego. Podobnie jak w Unii Europejskiej, tak i w innych państwach proponuje się nie- ustalanie wartości NDSCh. Zgodnie z zaleceniami WHO (1982) proponuje się natomiast ustalenie wartości DSB, tj. obniżenie aktywności acetylocholinoesterazy w krwinkach czerwonych do poziomu 70% aktywności wyjściowej. Ponadto związek należy oznaczyć literami Sk, ze względu na jego wchlanialność przez skórę.
EN
Sulfotep is a pale yellow, noncombustible liquid with a garlic odor. It is often used in greenhouse fumigant formulations for control of aphids, spider mites, whiteflies, and thrips. Sulfotep is an organophosphate pesticide whose toxicity is similar to that of paration. Poison by ingestion, skin contact and possibly other routes. Sulfotep is an organophosphate choline- 11640 sterase inhibitor; inhibited cholinesterase activity in the plasma, erythrocytes and in the brein. Sulfotep is highly toxic following oral administration and following dermal application. The lished dermal LD50 for rats is 65 mg/kg, and the oral LD50 for the rat is 5 mg/kg and 13,8 mg/kg. Based on the fact that inhalation of an aerosol concentration of 1, 94 mg/mJ of sulfotep administered to rats 6 hours/day, 5 days/week for 12 weeks failed to produce any adverse effects, a concentration 0,1 mg of sulfotep/m3 is proposed as a maximum exposure limit (maximum allowable concentration). Because sulfotep has been shown to penetrate the skin in amounts sufficient to induce systemic toxicity, the skin notation is considered appropriate. At this time, no STEL is recommended until additional toxicological data.
12
Content available Ftalan dibutylu – frakcja wdychana
63%
PL
Ftalan dibutylu (DBP) jest przezroczystą, oleistą cieczą o charakterystycznym dla estrów zapachu, którą stosuje się przede wszystkim jako dodatek zmiękczający do takich żywic i polimerów, jak: PCV (76% produkcji), uszczelniaczy, klejów i spoiw (14% produkcji) oraz tuszów drukarskich (7% produkcji). Pozostałe 3% produkcji ftalanu dibutylu stosuje się przy wytwarzaniu: farb nitrocelulozowych, włókien szklanych oraz kosmetyków. Ze względu na niską prężność par w temperaturze pokojowej podwyższone stężenia ftalanu di butylu mogą wystąpić jedynie w procesach technologicznych przebiegających w podwyższonej temperaturze mlub w procesach związanych z występowaniem aerozoli ftalanu dibutylu w powietrzu środowiska pracy. Na podstawie wyników pomiarów z lat 90. udostępnionych przez jeden z europejskich zakładów, wykazano, że w procesie produkcji ftalany dibutylu średnie stężenie na większości stanowisk pracy nie przekraczało 0,5 mg/m3, a w przypadku kilku stanowisk wynosiło 1,1 lub 5 mg/m3. W innym zakładzie średnie stężenie ftalanu dibutylu wynosiło 0,04 mg/m3 w 1992 r. oraz 0,7 mg/m3 w 1995 r. Pomiary stężeń wykonane w 1996 r. przy wytwarzaniu produktów zawierających ftalan di butylu wskazują, że stężenia tego związku wynosiły 0,19 - 0,75 mg/m3 (produkcja kabli), < 0,008 mg/m3 (produkcja polimerów) oraz < 0,03 (produkcja polimerów dla przemysłu dekarskiego). Według danych GIS, zarówno w 2007 r., jak i w 2010 r. nie było pracowników narażonych na stężenia ftalany dibutylu przekraczające obowiązujące normatywy (NDS – 5 mg/m3 i NDSCh – 10 mg/m3). W wykazie chorób zawodowych obejmującym lata 2001-2010, opracowanym na podstawie danych Centralnego Rejestru Chorób Zawodowych w Instytucie Medycyny Pracy, odnotowano tylko jeden przypadek choroby skóry u osoby narażonej na ftalan dibutylu w zakładzie przetwórstwa przemysłowego. Ftalan dibutylu wchłania się do organizmu przez układ oddechowy oraz pokarmowy, nie ulega kumulacji i jest wydalany głównie z moczem. Na podstawie mediany dawek lub stężeń śmiertelnych ftalanu dibutylu, które uzyskano na podstawie wyników badań doświadczalnych na gryzoniach, wykazano, że ftalan dibutylu jest substancją o stosunkowo małej toksyczności ostrej. W większości badań związek nie wykazywał działania drażniącego ani uczulającego ludzi i zwierząt doświadczalnych. Jak wynika z dostępnego piśmiennictwa, skutki działania toksycznego ftalanu dibutylu w warunkach narażenia podprzewlekłego i przewlekłego oceniano prawie wyłącznie na podstawie wyników badań na szczurach narażanych dożołądkowo. Wartości NOAEL dla działania toksycznego wyznaczano na poziomie 176 - 353 mg/kg m.c./dzień, a najczęściej obserwowanymi skutkami narażenia było: zmniejszenie masy ciała, zmiany parametrów krwi, zwiększenie masy wątroby i nerek. Jeśli chodzi o szkodliwe działanie ftalanu dibutylu, to jest to przede wszystkim związek o potwierdzonym szkodliwym działaniu na rozrodczość i dziecko w łonie matki. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE) nr 1272/2008 ftalan di butylu jest zaklasyfikowany jako substancja działająca szkodliwie na rozrodczość, kategoria zagrożeń 1B, z przypisanym zwrotem wskazującym rodzaj zagrożenia H360Df – może działać szkodliwie na dziecko w łonie matki; podejrzewa się, że działa szkodliwie na płodność. W dostępnych wynikach badań szkodliwego działania ftalanu dibutylu na rozrodczość, najmniejsze wyznaczone wartości NOAEL wynosiły: 50 mg/kg m.c./dzień dla zaburzeń płodności oraz 30 mg/kg m.c./dzień dla szkodliwego działania na płód. W Polsce, podobnie jak w większości państw Europy, wartości najwyższego dopuszczalnego stężenia (NDS) ftalanu dibutylu ustalono na poziomie 5 mg/m3. Stężenie to zabezpiecza przed uciążliwymi warunkami pracy związanymi z narażeniem na aerozole, którego należy oczekiwać w przypadku ftalanu dibutylu ze względu na jego małą prężność par. Biorąc pod uwagę dużą wartość NOAEL, oszacowano, że dotychczasowa wartość NDS ftalanu dibutylu powinna również zabezpieczać zarówno przed skutkami jego działania toksycznego, jak i jego szkodliwym wpływem na rozrodczość i płód. Zaproponowano więc pozostawienie wartości NDS ftalanu dibutylu na dotychczasowym poziomie wynoszącym 5 mg/m3. Jednocześnie proponuje się zrezygnowanie z dotychczas obowiązującej wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh – 10 mg/m3) ftalany dibutylu, dlatego że wyniki dostępnych badań nie wskazują na działanie drażniące związku. Obecnie brak jest podstaw do zaproponowania wartości dopuszczalnego stężenia ftalanu dibutylu w materiale biologicznym (DSB). Zaleca się oznakowanie substancji w wykazie literami „Ft” oznaczającymi substancję działającą toksycznie na płód.
EN
Dibutyl phthalate (DBP) is a clear, oily liquid with ester-like odour. It is used mostly as a plasticizer for resins and polymers such as polyvinyl chloride (76% production), sealants and adhesives (14% production) and inks (7% production). The rest 3% of DBP production is used for nitrocellulose lacquers, safety glass and cosmetic products. As far as occupational exposure is concerned, the inhalation route of exposure is important and, to a lesser extent, dermal contact. Because of low vapour pressure at room temperature, the high concentration of DBP may only occur during technological processes where the temperature is elevated or DBP aerosols are generated. Measurements done by a European company in the 1990s showed that during DBP production the mean concentration of this substance in the workplace was below 0.5 mg/m3, and only in a few workplaces 1.1 or 5 mg/m3. In a different plant, the mean DBP concentration was 0.04 mg/m3 in 1992 and 0.7 mg/m3 in 1995. The measurements of DBP concentration carried out in 1996 at production processes of different products containing DBP showed that the concentration of this chemical was 0.19 – 0.75 mg/m3 (cables), < 0.008 mg/m3 (polymers) and < 0.03 (polymers for the tiling industry). In 2007 and 2010, according to data of Polandʼs Chief Sanitary Inspectorate, no workers were occupationally exposed to DBP in concentrations in excess of Polish OEL values. According to the Polish inventory of occupational diseases of the Nofer Institute of Occupational Medicine (Lodz, Poland), in 2001-2010 there was only one case of skin disorder in a worker occupationally exposed to DBP. DBP is absorbed in the respiratory and gastrointestinal tract, no significant accumulation has been recorded and it is excreted mainly in urine. LD50 values derived from experiments with rodents revealed that DBP was a substance of relatively low acute toxicity. In most studies, the substance caused no irritation or sensitisation in human or in laboratory animals. According to available data, subchronic and chronic toxicity of DBP was evaluated almost exclusively on the basis of studies on rats exposed orally. NOAEL values were equal to 176 – 353 mg/kg bw/d; the most often observed effects of exposure were decrease in body weight, changes in blood parameters and a relative increase in the weight of the liver and kidneys. DBP is a compound of a confirmed reprotoxic activity. According to Regulation (EC) No. 1272/2008 of the European Parliament and of the Council, DBP is classified as Reprotoxic, category 1B with hazard statement H360Df (may damage the unborn child, suspected of damaging fertility). In the available studies on DBP reprotoxocity, the lowest described NOAELs were 50 mg/kg bw/d for fertility and 30 mg/kg bw/d for foetus effects. In Poland, like in most European countries, the OEL value was set at the level equal to 5 mg/m3. This value is supposed to protect from burdensome working conditions connected with exposure to DBP aerosols expected due to its low vapour pressure. Taking into account the NOAEL values cited in the available literature, it was agreed that this level should also protect from toxic and reprotoxic DBP activity. It was agreed that the previous DBP OEL value of 5 mg/m3 should remain unchanged. Simultaneously, it was proposed that the previous STEL value of 10 mg/m3 should be removed from the Polish inventory of OELs as inaccurate due to no irritation activity of DBP confirmed in available studies. It is also recommended to label DBP, in the Polish inventory of OELs, with the letters ‘Ft’ – a substance toxic to the foetus.
13
Content available Tetrametylosukcynonitryl
63%
|
|
tom Nr 4 (70)
151--165
PL
Tetrametylosukcynonitryl (TMSN) jest ciałem stałym występującym w postaci białych kryształów. Związek stanowi produkt uboczny reakcji polimeryzacji w tonerach fotokopiarek oraz jest uwalniany podczas produkcji pianek winylowych. Substancja znajduje się na liście priorytetowej SCOEL do opracowania i ustalenia wartości OEL. Tetrametylosukcynonitryl w warunkach narażenia zawodowego wchłania się do organizmu drogą inhalacyjną i przez skórę. Głównymi skutkami narażenia ostrego inhalacyjnego ludzi na tetrametylosukcynonitryl są takie objawy ze strony ośrodkowego układu nerwowego, jak: bóle i zawroty głowy, nudności, wymioty, drgawki i utrata przytomności. Populację osób narażonych na tetrametylosukcynonitryl stanowią pracownicy zatrudnieni przy produkcji pianek winylowych oraz osoby obsługujące fotokopiarki. Tetrametylosukcynonitryl nie został zaklasyfikowany urzędowo. Związek charakteryzuje się wysoką toksycznością ostrą po narażeniu inhalacyjnym i drogą pokarmową. U zwierząt narażanych na tetr-metylosukcynonitryl obserwowano drgawki i utratę przytomności z powodu niedotlenienia, a następnie padnięcia zwierząt. W dostępnym piśmiennictwie nie opisano badań dotyczących działania mutagennego, rakotwórczego, embriotoksycznego oraz wpływu na rozrodczość tetrametylosukcynonitrylu. W badaniach doświadczalnych na zwierzętach nie wykazano działania teratogennego związku. Opierając się na danych doświadczalnych (narażenie 90-dniowe) przeprowadzonych na zwierzętach (psy), a dotyczących działania układowego tetrametylosukcynonitrylu, proponuje się przyjęcie stężenia 2,6 mg/m3 tetrametylosukcynonitrylu za wartość najwyższego dopuszczalnego stężenia (NDS) związku. Ze względu na wchłanianie się substancji przez skórę substancję oznakowano literami „Sk”. Zaproponowana wartość normatywu higienicznego powinna zabezpieczyć pracowników przed ujemnymi skutkami układowymi związku. Nie ma podstaw merytorycznych do zaproponowania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB) tetrametylosukcynonitrylu.
EN
Tetramethyl succinonitrile (TMSN) is a colorless, odorless solid. TMSN is released when the blowing agent, azobisisobutyronitrile, is heated and decomposes during the production of vinyl foam. TMSN is also the by-product of a polymerization catalyst in photocopier toner. In occupational exposure TMSN is absorbed into the respiratory tract in the form of its vapors and into the skin in its liquid or vapor forms. The clinical studies of people exposed to TMSN showed headaches, nausea, convulsions and coma. Animals treated with TMSN developed violent convulsions and asphyxia; death was delayed from 1 minute to 5 hours after the onset of convulsions. The current TLV-TWA of 2.6 mg/m3 for TMSN is based on the subchronic study which was conducted on dogs. The proposed value should protect workers against systemic toxicity manifested in workers as headache, nausea, and convulsions. Additional notation ofTMSN is ‘’Sk’’ – asubstance which can be absorbed through skin.
PL
Metyloamina (MMA) jest bezbarwnym palnym gazem lub cieczą, o ostrym amoniakalnym lub rybim zapachu oraz słonym smaku. Metyloamina znalazła zastosowanie jako rozpuszczalnik, w preparatyce farmaceutycznej i syntezie chemicznej (półprodukt do produkcji pestycydów, surfaktantów i przyspieszaczy). Narażenie na metyloaminę może występować w przemyśle barwników i garbników, gdzie związek stanowi produkt przejściowy. Głównym skutkiem działania MMA po narażeniu drogą inhalacyjną u ludzi jest działanie drażniące na oczy, skórę i układ oddechowy. Nie obserwowano skutków działania drażniącego u narażonych zawodowo na MMA o stężeniach poniżej 12,8 mg/m3 (10 ppm). U narażonych metyloaminą o stężeniach 25,6 -5- 128 mg/m3 (20 -f 100 ppm) obserwowano umiarkowane skutki działania drażniącego na układ oddechowy i oczy, charakteryzujące się pieczeniem w nosie i gardle, łzawieniem i zaczerwienieniem oczu. Po narażeniu na metyloaminę o stężeniu około 76,8 mg/m3 (60 ppm) obserwowano przypadki alergicznego i chemicznego zapalenia oskrzeli. Po narażeniu na związek o większych stężeniach obserwowano kaszel, nudności, zaczerwienienie twarzy i oczu, niewyraźne widzenie, a także osłabienie, bóle głowy i brzucha, wymioty oraz biegunkę. Objawy ustępowały po zakończeniu narażenia. Powtarzane narażenie na pary MMA powoduje działanie drażniące na układ oddechowy u zwierząt. Wyznaczona w doświadczeniu inhalacyjnym podchronicznym wartość NOAEL wynosi 96 mg/m3. Za podstawę wartości NDS metyloaminy przyjęto stężenie związku, które nie powodowało skutków działania drażniącego u narażonych zawodowo na MMA, tj. 12,8 mg/mJ (10 ppm). Przyjmując współczynnik niepewności dla różnic wrażliwości osobniczej równy 2, proponuje się nie zmieniać obowiązujących dotychczas w Polsce wartości normatywów higienicznych metyloaminy, czyli pozostawić wartość NDS na poziomie 5 mg/mJ i wartość NDSCh na poziomie 15 mg/m3 (3 x wartość NDS ze względu na działanie drażniące). Wyznaczone na podstawie wyników badań na myszach stężenie MMA, które powodowało, że częstość odde¬chów spadła o 50% (RD50), wynosiło 180 mg/m3 (141 ppm). Zaproponowana wartość NDS stanowi 0,028 RD50, co jest zgodne z przyjętymi kryteriami, że wartość najwyższego dopuszczalnego stężenia substancji ustalana na podstawie ostrego działania drażniącego powinna mieścić się w granicach 0,01 + 0,1 wartości RD50, tj. 1,8 - 18 mg/m3.
EN
Methylamine is a gas at ambient temperature and pressure which has a pungent, fishy, ammoniacal odor and saline taste. Methylamine is available either as an anhydrous compressed gas or as a 30%, 40% and 50% aqueous solution. Methylamine has been used as an insect attractant, as a warning agent in natural gas, as a flotation agent, and as an inteimediate in chemical synthesis. Methylamine is corrosive to human skin and eyes. A concentrated aqueous solution applied to intact human skin causes severe burning and hyperemia. The nasal, eye and skin irritation occurs as a consequence of chronic exposure to methylamine vapors at concentration of 32 mg/m'’, but that exposure at concentrations of 12,8 mg/m3 produces no observable irritation. The RD50 concentration (the concentration which produces a 50% reduction in breath rate in exposed mice) was 180 mg/m3. Based on human data the Expert Group for Chemical Agents established the 8-hour TWA value of 5 mg/m3 and the STEL value of 15 mg/m3.
PL
Kumen jest lotną, bezbarwną cieczą o ostrym aromatycznym zapachu podobnym do zapachu benzyny. Jest stosowany w syntezie organicznej do produkcji fenolu i acetonu, jako rozpuszczalnik: farb, lakierów i żywic, a także dodatek do paliw lotniczych. Kumen stosuje się także w przemyśle drukarskim i gumowym. Według informacji udostępnionych przez Państwowy Inspektorat Sanitarny w Polsce nie odnotowano w 2010 r. przekroczeń obecnie obowiązującej wartości NDS kumenu, tj. 100 mg/m³, natomiast w 2014 r. 51 osób było narażonych na kumen o stężeniach wynoszących od 0,1 (tj. 10 mg/m³) do 0,5 obowiązującej wartości NDS (tj. 50 mg/m³). Pary kumenu wykazują działanie drażniące na drogi oddechowe. U ludzi duże stężenia kumenu w powietrzu spowodowały bolesne podrażnienie oczu i górnych dróg oddechowych. Kumen wykazuje niską toksyczność ostrą. U zwierząt doświadczalnych głównymi skutkami narażenia inhalacyjnego na kumen było upośledzenie funkcji ośrodkowego układu nerwowego. W narażeniu przewlekłym kumen wykazywał działanie hepatotoksyczne. W badaniach w warunkach in vitro kumen nie wykazywał działania genotoksycznego ani mutagennego. W badaniach in vivo test mikrojądrowy dał wynik dodatni jedynie wówczas, gdy kumen podano dootrzewowo szczurom. Natomiast test kometowy wskazywał na zależny od wielkości dawki kumenu wzrost uszkodzenia DNA tylko w hepatocytach u samców szczurów i komórkach płuc samic szczurów. Z kolei, metabolit kumenu – α-metylostyren nie wykazywał działania mutagennego w testach na bakteriach, natomiast powodował uszkodzenie chromosomów w kulturach komórkowych oraz komórkach gryzoni. Eksperci IARC zaliczyli kumen do grupy 2.B – czynników przypuszczalnie rakotwórczych dla ludzi na podstawie wystarczających dowodów działania rakotwórczego kumenu na zwierzęta. Inhalacyjne narażenie myszy prowadziło do wzrostu częstości występowania: gruczolaków i raków pęcherzykowych oskrzelikowych, naczyniakomięsaków krwionośnych w śledzionie samców myszy oraz gruczolaków i raków wątrobowokomórkowych u samic myszy. U szczurów narażanych inhalacyjnie na kumen stwierdzono wzrost występowania gruczolaków nabłonka oddechowego nosa u zwierząt obu płci. U samców szczurów obserwowano wzrost występowania gruczolaków i raków kanalików nerkowych. Kumen jest dobrze wchłaniany wszystkimi drogami narażenia. Jest substancją lipofilną, która jest dobrze rozmieszczana w organizmie. Metabolizm kumenu w organizmie przebiega z udziałem cytochromu P-450. Głównym metabolitem zidentyfikowanym w moczu był 2-fenylo-2-propanol, natomiast w wydychanym powietrzu wykryto kumen oraz α-metylostyren. W 2014 r. eksperci Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) przygotowali zmianę wartości wskaźnikowej kumenu, tj. zmniejszenie stężenia 100 mg/m3 (dyrektywa 2000/39/WE) do 50 mg/m³, natomiast pozostawienie wartości STEL na tym samym poziomie, tj. 250 mg/m³. Związek zaliczono do grupy D związków rakotwórczych, czyli do związków, które nie działają genotoksycznie i nie oddziałują na DNA, dla których można ustalić wartość dopuszczalną na podstawie wartości NOAEL. Polska nie zgłosiła uwag do proponowanej przez SCOEL wartości OEL oraz STEL dla kumenu w trakcie konsultacji publicznych, które trwały do września 2014 r. Nowa wartość wskaźnikowa została ustalona na pod-stawie 3-miesięcznego badania National Toxicology Program (NTP) na szczurach i myszach oraz przyjętej wartości NOAEC na poziomie około 310 mg/m³ (62,5 ppm) dla działania hepatotoksycznego kumenu. Eksperci SCOEL ustalili wartość STEL kumenu na poziomie 250 mg/m³, ze względu na działanie drażniące par kumenu na drogi oddechowe oraz na ośrodkowy układ nerwowy. Ponadto przyjęto notację „skin” dla kumenu, ze względu na możliwość wchłaniania się substancji przez skórę. Za dopuszczalne stężenie w materiale biologicznym (DSB) eksperci SCOEL ustalili 7 mg 2-fenylo-2-propanolu/g kreatyniny (po hydrolizie moczu). Wartość najwyższego dopuszczalnego stężenia (NDS) kumenu ustalono na podstawie działania hepatotoksycznego oraz nefrotoksycznego (zwiększenie masy wątroby i nerek). Za wartość NOAEC przyjęto stężenie kumenu równe 310 mg/m3 ustalone na podstawie wyników 3-miesięcznego badania NTP na szczurach. Zaproponowano zmniejszenie do 50 mg/m³ obowiązującej wartości NDS – 100 mg/m3. Z uwagi na działanie drażniące par kumenu na drogi oddechowe oraz na ośrodkowy układ nerwowy zaproponowano pozostawienie obowiązującej wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 250 mg/m³, co odpowiada wartości STEL przyjętej w SCOEL. Zaproponowano także wartość dopuszczalnego stężenia w materiale biologicznym (DSB) równą 7 mg 2-fenylo-2-propanolu/g kreatyniny w moczu (dla próbek poddanych hydrolizie i pobranych bezpośrednio po zakończeniu zmiany roboczej). Zalecono pozostawienie oznakowania związku literą „I” (substancja o działaniu drażniącym) oraz notą „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową).
EN
Cumene is a clear, colourless liquid with a strong aromatic gasoline-like odour. Cumene is used for the synthesis of phenol and acetone and as a solvent in paints, varnishes and resins. It is also used in the printing and rubber industries. According to data from Polish Chief Sanitary Inspectorate, in 2010, no workers were occupationally exposed to cumene in concentrations exceeding Polish OEL values (100 mg/m3 ). In 2014, 51 workers were exposed to cumene in concentrations from 0.1 to 0.5 MAC value (from 10 mg/m3 to 50 mg/m3 ). Cumene vapours are irritating to the respiratory tract. In humans, high concentrations of cumene cause painful irritation to the eyes and the respiratory tract. In animals, cumene causes mainly CNS depression. Chronic exposure to cumene can cause hepatotoxicity. In vitro tests indicated no mutagenic and no genotoxic potential of cumene. Intraperitoneal injection of cumene induced micronuclei in bone marrow of rats. Dose-related increases in DNA damage were observed in liver cells of male rat and lung cells of female mouse. A metabolite of cumene, α-methylstyrene, was not mutagenic in bacterial tests but induced chromosomal damage in cell cultures and rodent cells. IARC experts classified cumene in group 2.B – chemicals possibly carcinogenic to humans based on sufficient evidence in experimental animals for the carcinogenicity of cumene. Exposure of mice to cumene by inhalation increased the incidence of alveolar/bronchiolar adenoma and carcinoma in males and females mice, haemangiosarcoma of the spleen in male mice and hepatocellular adenoma in female mice. Exposure of rats to cumene by inhalation increased the incidence of nasal adenoma in males and females and renal tubule adenoma and carcinoma in male rats. Cumene is well absorbed. It is a lipophilic substance which is well distributed in the whole body. Cytochrome P-450 is involved in cumene metabolism. Main metabolite identified in urine was 2-phenyl-2-propanol and in exhaled air α-methylstyrene. In 2014, Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) prepared change of indicative OEL for cumene – reduction of concentration from 100 mg/m3 (directive 2000/39/WE) to 50 mg/m³, STEL value 250 mg/m3 remain unchanged. The compound was included in SCOEL carcinogenicity group D (not genotoxic and not affecting DNA chemicals), for which a health-based OEL may be derived on the basis of NOAEL value. Poland did not submit any comments on SCOEL proposal during public consultations in 2014. A new indicative OEL was derived on the basis of 3-month NTP inhalation studies in rats and mice. SCOEL established 310 mg/m³ (62.5 ppm) level as a NOAEC for hepatotoxicity. A STEL of 250 mg/m3 (50 ppm) have been recommended to protect against respiratory tract irritation and behavioural effects. Moreover, a “skin notation” was recommended because of its probable skin penetration. BLV recommended by SCOEL is 7 mg 2-phenyl-2-propanol per gramme of creatinine in urine (after hydrolysis). To determine MAC value for cumene hepatotoxicity and nephrotoxicity were adopted as a critical effect. The Expert Group for Chemicals Agents established 310 mg/m³ as NOAEC based on 3-month NTP inhalation studies in rats and proposed reduction of the current MAC value from 100 to 50 mg/m3 . It was agreed that the previous STEL value of 250 mg/m3 should remain unchanged, which is also in accordance with the value recommended by SCOEL. Recommended BEI value is 7 mg 2-phenyl-2-propanol per gramme of creatinine in urine (after hydrolysis), sampled immediately after work shift. It was recommended to remain “I” (irritant) and “Sk” (substance can penetrate skin) labelling of cumene.
16
Content available Formamid
63%
|
|
tom Nr 2 (64)
131--151
PL
Formamid jest bezbarwną, bezwonną cieczą o małej lepkości, stosowaną jako rozpuszczalnik przemysłowy, która znalazła zastosowanie w produkcji: barwników, farmaceutyków, pestycydów oraz przy wytwarzaniu włókien akrylowych w pisakach i w markerach. Formamid jest ponadto stosowany także jako dodatek do smarów olejowych, cieczy hydraulicznych oraz środków przeciwoblodzeniowych używanych na lotniskach, a także jako środek do zmiękczania papieru, klejów zwierzęcych oraz rozpuszczalnych w wodzie. Formamid jest też stosowany w badaniach genetycznych oraz jako krioprotektant. Głównymi drogami narażenia na formamid w warunkach pracy zawodowej są układ oddechowy i skóra. W badaniach prowadzonych na zwierzętach doświadczalnych związek ten wykazywał słabe działanie drażniące na skórę oraz oczy i nie wykazywał działania uczulającego. Dwutygodniowe narażenie szczurów drogą inhalacyjną na formamid o stężeniu 920 mg/m3 spowodowało zmniejszenie liczby płytek krwi oraz limfocytów we krwi. Związek o stężeniu 2760 mg/m3 spowodował dodatkowo spadek przyrostu masy ciała, jak również mikroskopowe zmiany w nerkach (nekrozy nabłonka kanalików nerkowych). Na podstawie wyników trzymiesięcznych badań na szczurach wykazano, że formamid może być wchłaniany przez skórę w ilości wystarczającej do pojawienia się objawów toksyczności ogólnej. Formamid podawany na skórę w dawce 300 lub 1000 mg/kg pod opatrunek powodował policytemię, natomiast po dawce 3000 mg/kg obserwowano u zwierząt osłabienie oraz zmianę masy narządów wewnętrznych. W badaniach dotyczących toksyczności reprodukcyjnej formamidu po narażeniu przewlekłym myszy zaobserwowano spadek płodności i wielkości miotu w pokoleniach F0 i F1. Pokolenie F1 wykazywało dodatkowo spadek masy ciała, wydłużenie okresu ciąży, zmniejszenie względnej masy jajników oraz tendencję do wydłużania czasu spoczynkowego między rujami. Toksyczność reprodukcyjna była obserwowana po narażeniu na związek o stężeniu wynoszącym 750 ppm w obydwóch generacjach (195 mg/kg/dzień dla pokolenia F0 oraz 190 mg/kg/dzień dla pokolenia F1). W badaniu tym formamid był podawany z wodą do picia. Na podstawie wyników badań doświadczalnych na zwierzętach stwierdzono, że formamid ma właściwości embriotoksyczne oraz teratogenne po podaniu go drogą dermalną, pokarmową oraz dootrzewnowo. W badaniach tych zaobserwowano resorpcję lub śmierć zarodków, jak również wady rozwojowe i spadek masy ciała płodów. Wartość NOAEL dla toksyczności rozwojowej w badaniach na szczurach ustalono na poziomie 50 mg/kg/dzień, a wartość LOAEL na poziomie 100 mg/kg/dzień (na podstawie spadku masy ciała). W badaniach na królikach po dawce formamidu 140 mg/kg/dzień obserwowano zmniejszenie średniej liczby żywych płodów w miocie oraz masy płodów na miot. Wartość NOAEL dla toksyczności rozwojowej ustalono na poziomie 70 mg/kg/dzień. W Polsce nie ustalono dotychczas wartości najwyższego dopuszczalnego stężenia (NDS) formamidu. W USA (ACGIH), Belgii, Norwegii oraz w Szwajcarii ustalono wartość normatywu higienicznego na poziomie 18 mg/m3. Oznakowanie „skin” dla tego związku przyjęto w: USA (ACGIH, NIOSH), Niemczech, Finlandii oraz w Belgii. Za podstawę do wyliczenia wartości NDS formamidu przyjęto 14-dniowy eksperyment na szczurach narażanych drogą oddechową. Za skutek krytyczny przyjęto zmniejszoną liczbę płytek krwi i limfocytów we krwi oraz uszkodzenie nerek. Za wartość NOAEL formamidu przyjęto stężenie 184 mg/m3. Zaproponowano wartość NDS formamidu na poziomie 23 mg/m3. Jednocześnie zaproponowano oznakowanie formamidu w wykazie NDS literami „Sk (substancja wchłaniana przez skórę) na podstawie kryteriów zaproponowanych przez Fiserovą-Bergerową i in. (1990), jak również wyników badania 3-miesięcznego oraz 2-tygodniowego na szczurach. Ze względu na fakt, że formamid rozpatruje się jako działający szkodliwie na funkcje rozrodcze człowieka (może działać szkodliwie na dziecko w łonie matki) zaleca się oznakowanie substancji w wykazie literami „Ft” – substancja działająca toksycznie na płód.
EN
Formamide is a colourless and odourless liquid. This substance is widely used as a solvent in the industry as well as an additive for drilling muds, aircraft deicing fluids and hydraulic fluids. Respiratory tract and skin are the major routes of occupational exposure to formamide. Slight skin and eye irritation was reported in animal studies. Formamide did not produce allergic skin sensitisation. A study in rats treated for 3 months with formamide under semi-occlusive patches to the skin produced systemic toxicity. Rats exposed for 14 days at 920 mg/m3 of formamide vapor had suppressed platelet and lymphocyte counts. In animals exposed at 2760 mg/m3 a decreased rate of body weight gain and microscopic lesions in the kidney (necrosis of tubular epithelium) were observed. Effects on reproduction were seen at 750 ppm of formamide in drinking water in a two-generation study in mice. Formamide showed embryotoxicity and developmental toxicity in animals following dermal, per os and intraperitonealy exposure. In setting the exposure limit, the results of a 14-day inhalation study in rats were considered. Based on the NOAEL value of 184 mg/m3 and appropriate uncertainty factors, a MAC value was calculated at 23 mg/m3. Considering evidence on skin absorption an additional determination with Sk letters was proposed. With regard to the fetotoxic effects of formamide in laboratory animals an Ft notation was considered.
|
|
tom Nr 2 (44)
5--28
PL
Akrylan etylu jest bezbarwną lotną cieczą o ostrym, gryzącym zapachu, powszechnie stosowaną w przemyśle chemicznym, włókienniczym, skórzanym, papierniczym, farmaceutycznym i kosmetycznym. Stosowana jest także do produkcji tworzyw sztucznych, włókien syntetycznych, gumy syntetycznej, klejów, farb i lakierów, a także do impregnacji włókien sztywnikowych, tkanin dekoracyjnych, wykładzin podłogowych i papieru. Akrylan etylu w warunkach przemysłowych wchłania się głównie przez układ oddechowy, ze względu na swą dużą lotność. Ponadto, w postaci ciekłej wchłania się przez nieuszkodzoną skórę w ilościach mogących spowodować zatrucia. W obowiązującym w Polsce wykazie niebezpiecznych substancji chemicznych akrylan etylu został zaklasyfikowany jako produkt wysoce łatwo palny, szkodliwy, drażniący i uczulający. U ludzi przewlekle narażonych na pary akrylanu etylu stwierdzono przede wszystkim objawy podrażnienia skóry twarzy oraz błon śluzowych oczu i górnych dróg oddechowych. Osoby narażone uskarżały się na dolegliwości o charakterze neurowegetatywnym (np. bóle głowy czy zwiększoną pobudliwość). U zwierząt narażanych przewlekle na akrylan etylu stwierdzono podrażnienie błon śluzowych oczu i górnych dróg oddechowych oraz zaburzenie oddychania, zaburzenia spontanicznej aktywności i koordynacji ruchowej. W badaniach patomorfologicznych narządów wewnętrznych tych zwierząt stwierdzono, że akrylan etylu powoduje uszkodzenie płuc, żołądka, wątroby, śledziony i nerek. W dostępnym piśmiennictwie nie ma doniesień o odległych skutkach narażenia na akrylan etylu u ludzi. Na podstawie wyników badań na zwierzętach przypuszcza się, że związek w dużych dawkach wykazuje działanie embriotoksyczne. Na podstawie wyników badań metabolizmu związku u zwierząt wykazano, że akrylan etylu w organizmie zwierząt ulega hydrolizie do kwasu akrylowego i alkoholu etylowego bądź zostaje sprzęgnięty z niskocząsteczkowymi związkami zawierającymi grupy sulfhydrylowe. Na podstawie wyników uzyskanych z badań przeprowadzonych w warunkach in vivo sądzi się, że akrylan etylu nie wykazuje działania mutagennego i genotoksycznego, natomiast na podstawie danych z badań in vitro wykazano jego działanie klastogenne. W Międzynarodowej Agencji Badań nad Rakiem (IARC) zaklasyfikowano akrylan etylu do grupy 2B, czyli do związków prawdopodobnie rakotwórczych dla ludzi, natomiast Amerykańska Konferencja Rządowych Higienistów Przemysłowych (ACGIH) zaklasyfikowała go do grupy A4, czyli do związków nieklasyfikowanych jako rakotwórcze dla ludzi. W Unii Europejskiej nie klasyfikuje się akrylanu etylu pod względem działania rakotwórczego. Celem ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) akrylanu etylu uwzględniono wyniki z doświadczenia inhalacyjnego 27- lub 24-miesięcznego, które przeprowadzono na szczurach i myszach obu płci. Wartość NOAEL określona na podstawie działania drażniącego związku wynosiła 20 mg/m3. Proponowana wartość NDS wynosi 20 mg/m3. Wartość proponowanego najwyższego stężenia chwilowego (NDSCh) akrylanu etylu wynosi 40 mg/m3. Ponieważ związek ten działa uczulająco, drażniąco i wchłania się przez skórę, dlatego proponujemy oznaczyć go odpowiednimi literami: „A” – działanie uczulające, „I” – działanie drażniące i „Sk” – wchłania się przez skórę.
EN
Ethyl acrylate is a colorless liquid with an acrid odor. Ethyl acrylate is used to make acrylic resins and as emulsion and solution polymers for surface coating textiles, paper, and leather. It is also used in the production of acrylic fibers, adhesives, and binders. Ethyl acrylate has limited use as a fragrance and flavoring agent. The acute toxicity of ethyl acrylate for laboratory animals is moderate by all routes of administration. The subcutaneous LD50 for rabbit is 1790 mg/kg, and the oral LD50 for the rat is 1020 mg/kg. The liquid and vapor phases of ethyl acrylate are irritating to the eyes, the skin and mucous membranes. Prolonged worker inhalation exposure to ethyl acrylate produced drowsiness, headache, and nausea. Limited data indicate the potential for ethyl acrylate to produce skin sensitization. Based on animal exposure data of a chronic irritation study we established 20 mg/m3 as the maximum exposure limit value for ethyl acrylate. This value should minimize adverse lacrimation and irritation of the skin and respiratory tract. STEAL value of 40 mg/m3. Because ethyl acrylate has been shown to penetrate the skin in amounts sufficient to induce systemic toxicity, the skin notation is considered appropriate. According to the irritant and sensitized effect of ethyl acrylate we suggest an additional determination with letters “I” and “A”.
18
Content available Trichloroeten
51%
PL
Trichloroeten (Tri) jest lotną, przezroczystą, bez barwną cieczą o słodkim eterycznym zapachu, zbliżonym do zapachu chloroformu. Substancja jest stosowana do odtłuszczania metali oraz jako rozpuszczalnik, Pary trichloroetenu drażnią błony śluzowe nosa i gardła, powodują także podrażnienia skóry i oczu. U ludzi trichloroeten w warunkach narażenia inhalacyjnego działa hamująco na czynności ośrodkowego układu nerwowego i wywołuje: bóle i zawroty głowy, senność, nudności i utratę przytomności. Narażenie na trichloroeten o dużych stężeniach powodowało zgon. Trichloroeten wykazuje również działanie nefrotoksyczne oraz hepatotoksyczne. Według danych Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki i Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonego w Instytucie Medycyny Pracy w Łodzi, na działanie trichloroetenu w 2011 r. było narażonych 1239 pracowników, którzy byli zatrudnieni: przy ekstrakcji tłuszczów z nasion, czyszczeniu i odtłuszczaniu metali, w przemyśle gumowym, farb i atramentów drukarskich oraz lakierów. W 2010 r., zgodnie z danymi Głównego Inspektoratu Sanitarnego, 5 osób było narażonych na trichloroeten o stężeniach większych od obowiązującej wartości NDS, czyli 50 mg/m w tym 2 oso by były zatrudnione przy produkcji wyrobów metalowych, a 3 osoby - przy innej produkcji nie- sklasyfikowanej. U zwierząt doświadczalnych głównymi skutkami narażenia inhalacyjnego na trichloroeten było: upośledzenie funkcji OUN, skutki nefrotoksyczne, hepatotoksyczne oraz wakuolizacja komórek Clara płuc u myszy. W komórkach ssaków w warunkach in vitro czysty trichloroeten wywoływał: transformację komórek, wymianę chromatyd siostrzanych, mutację genów, lecz nie powodował aberracji chromosomów. W dostępnym piśmiennictwie istnieją ograniczone dowody działania rakotwórczego trichloroetenu na ludzi. Wyniki kilku badań kohortowych ludzi narażonych zawodowo na trichloroeten wykazały zwiększone ryzyko zachorowania na: nowotwory wątroby, przewodów żółciowych i nerek, a także na chłoniaka nieziarniczego. Narażenie myszy na trichloroeten drogą pokarmową prowadziło do wzrostu częstości nowotworów wątroby. Związek indukował u myszy i szczurów także nowotwory o innej lokalizacji. Eksperci IARC zaliczyli trichloroeten do gru 2A - grupy substancji prawdopodobnie kancerogennych dla ludzi. Wyniki badań dotyczących wpływu trichloroetenu na rozrodczość ludzi nie dostarczyły jednoznacznych dowodów działania toksycznego związku. dostępnym piśmiennictwie i bazach danych nie znaleziono informacji o wynikach badań epidemiologicznych dotyczących narażenia zawodowe go na trichloroeten, w których ryzyko skutku teratogennego zależałoby znacząco od narażenia na tę substancję. Trichloroeten jest dobrze wchłaniany wszystkimi drogami narażenia: w postaci par wchłania się układzie oddechowym, a ciekły w przewodzie pokarmowym oraz przez skórę. Metabolizm trichloroetenu w organizmie przebiega z udziałem cytochromu P-450 i glutationu Główne metabolity trichloroetenu - trichloroetan i kwas trichlorooctowy, są wydalane z moczem częściowo w postaci glukuronidów. Te dwa metabolity są stosowane jako biochemiczne wskaźniki narażenia. Część wchłoniętego trichloroetenu je wydalana z powietrzem wydychanym w postaci niezmienionej. Wydalanie trichloroetenu z powietrzem oraz wydalanie metabolitów przebieg wielofazowo. Wartość najwyższego dopuszczalnego stężeni (NDS) trichtoroetenu ustalono na podstawie działania jego neurotoksycznego oraz nefrotoksycze go. Proponuje się utrzymanie obowiązującej wartości NDS trichloroetenu, czyli 50 mg/m3 Z uwagi na działanie drażniące substancji oraz działanie par trichloroetenu na OUN, proponuje się przyjęcie wartości najwyższego dopuszczalnego stężeni chwilowego (NDSCh) na poziomie 100 mg/m3 (2 razy wartość NDS). Proponuje się także utrzymanie dotychczas zalecanej wartości dopuszczalnego stężenia w materiale biologicznym (DSB) n poziomie 20 mg TCA/1 moczu. Zaleca się również oznakowanie związku literam „l”- substancja o działaniu drażniącym, „Sk” substancja wchłania się przez skórę oraz „Rakotw.kat. 2.” — substancja rakotwórcza kategorii 2.
EN
Trichloroethylene (Tri) is a volatile, colorless Iiquid with a sweetish odor resembling chloro form. Tri is mainly used in metal degreasing and as a solvent. Tri vapor is irritating to the eyes, nose, throat (mucous membranes) and skin. Human exposure to Tri results in CNS depression. Headache, dizziness, drowsiness, nausea, unconsciousness and death after exposure to very high concentrations have been observed. High doses of Tri produce hepatotoxicity and nephrotoxicity. After inhalation of Tri by laboratory animais, some adverse effects have been observed in CNS, liver, kidneys and Clara cells in mouse. In vitro studies in mammalian cells suggest that Tri can cause ceil transformation, sister chromatid exchange, gene mutations but does not produce chromosomal aberrations. There is limited evidence in humans for the carcinogenicity of Tri. The results of cohort studies indicate excessive risk of liver, biliary duct and kidney cancer and excessive risk of non Hodgkin’s lymphoma. Tri has produced liver tumours in mice after per os exposure as well as tumors at other sites in mice and rats. According to IARC, Tri is probably carcinogenic to humans (group 2A). The results of available studies show no consistent effects of Tri on the human reproductive system. To determine MAC value for Tri neurotoxicity and nephrotoxicity were adopted as a critical effect. The Expert Group for Chemicals Agents suggest maintaining the current MAC value of 50 mg/m Due to the irritating potential of Tri vapors to CNS, a 5TEL value of 100 mg/m (2 X MAC) has been proposed. It has been also proposed to label the substance with „1” (irritant), Sk (substance can penetrate skin) and „Rakotw. kat. 2” (carcinogen category 2). The current BEI value of 20 mg TCA/I urine is maintained.
19
Content available Azirydyna
51%
PL
Azirydyna jest bezbarwną, lotną, wysoce łatwopalną cieczą o zapachu podobnym do amonia-ku. Jest stosowana do produkcji trietylenomelaminy i 2-azirydynyloetanolu oraz jako monomer do produkcji polimerów (głównie polietylenoiminy). Polimery te są powszechnie stosowane w przemyśle papierniczym, w rafinacji olejów napędowych i smarów, w przemyśle tekstylnym, do produkcji leków i kosmetyków, środków powierzchniowo czynnych oraz jako stabilizatory innych polimerów, a tzw. wielofunkcyjne azirydyny wytwarzane w reakcji azirydyny i akrylanów są stosowane m.in. jako utwardzacze do farb. Opisywane w piśmiennictwie objawy ostrego narażenia inhalacyjnego ludzi na azirydynę obejmują: wymioty, zawroty i bóle głowy, ból w okolicach skroni, podrażnienie błon śluzowych ust i górnych dróg oddechowych, wydzielinę z nosa, obrzęk twarzy, krtani, tchawicy, wysięk w płucach, wtórne odoskrzelowe zapalenie płuc, a także uszkodzenie ośrodkowego układu nerwowego, wątroby i nerek. Substancja działa żrąco na oczy i skórę. Powoduje oparzenia skóry i poważne uszkodzenia oczu. Na podstawie wyników badań na zwierzętach w warunkach narażenia ostrego oceniono, że substancja działa bardzo toksycznie przez drogi oddechowe, w kontakcie ze skórą i po połknięciu, a jej pary działają silnie drażniąco na błony śluzowe dróg oddechowych i oczu (duże trudności w oddychaniu zaobserwowano u szczurów narażonych na azirydynę o stężeniu 17,6 mg/m3). U szczurów narażanych inhalacyjnie na azirydynę o stężeniu około 10 mg/m3, 4 h/dzień przez 1,5 miesiąca zaobserwowano zahamowanie przyrostu masy ciała, osłabienie siły mięśniowej, we krwi leukopenię i retikulocytozę, nieżyt oskrzeli, przyćmienie miąższowe wątroby, zmiany w nerkach, zmniejszenie liczby komórek limfatycznych w węzłach chłonnych, a także zaburzenie procesu spermatogenezy, działanie gonadotropowe, zmiany degeneracyjne w jądrach oraz zmniejszenie ruchliwości plemników i zdolności reprodukcyjnej. Azirydyna działa rakotwórczo na zwierzęta. Podawana dożołądkowo dwóm szczepom myszy powodowała u obu płci wzrost liczby przypadków nowotworów wątroby i płuca. Pojedyncza dawka azirydyny podana podskórnie oseskom myszy spowodowała wzrost częstości występowania nowotworów (głównie płuca) u samców. U szczurów powtarzane podanie podskórne azirydyny powodowało wzrost częstości występowania nowotworów w miejscu wstrzyknięcia. Unia Europejska zaklasyfikowała azirydynę do substancji, które rozpatruje się jako rakotwórcze dla człowieka (Rakotw. kat. 2.), taka sama klasyfikacja obowiązuje obecnie w Polsce. Azirydy-na jest uznana za kancerogen także przez IARC (grupa 2B), ACGIH (grupa A3), NIOSH, NTP i w Niemczech (grupa 2.). W uzasadnieniach podkreśla się, że działanie rakotwórcze azirydyny występuje u zwierząt, nie ma w dostępnym piśmiennictwie informacji o badaniach epidemio-logicznych dotyczących skutków przewlekłego narażenia na azirynę i nie jest znane odniesienie wyników badań na zwierzętach do ludzi. Azirydyna jest bardzo reaktywnym, bezpośrednim czynnikiem alkilującym, wykazującym silne działanie mutagenne i genotoksyczne. Eksperci Unii Europejskiej zaklasyfikowali azirydynę jako substancję mutagenną kat. 2., czyli substancję, którą rozważa się jako mutagenną dla czło-wieka. Ta klasyfikacja obowiązuje również prawnie w Polsce. Uwzględniając działanie drażniące i układowe azirydyny obserwowane w badaniach na zwierzętach, zaproponowano ustalenie wartości najwyższego dopuszczalnego stężenia azirydyny na poziomie 0,62 mg/m3. W dostępnym piśmiennictwie i bazach danych nie ma informacji pozwalających na zaproponowanie określenia wartości NDSCh i DSB azirydyny. Proponuje się dodatkowe oznakowanie związku: Rakotw. Kat. 2. – substancja rozpatrywana jako rakotwórcza dla ludzi; Muta. Kat. 2. – substancja rozpatrywana jako mutagenna dla ludzi; Sk – substancja wchłania się przez skórę; C – substancja o działaniu żrącym.
EN
Aziridine is a clear, colorless, highly flammable liquid with an amine odour. It is used in the production of triethylenemelamine, 2-aziridinylethanol and as monomer for polymers (mainly polyethyleneimine). It is also used in its polymeric form in paper, textile and oil industries and in the production of pharmaceuti-cals, cosmetics, surfactants, stabilizers and hardeners for paints. Acute inhalation human exposure causes vomiting, headache, dizziness, mouth and upper respiratory tract irritation, nasal secretion, swelling of the face, throat and larynx, edema of the lungs and secondary bron-chial pneumonia, and also CNS, renal and liver damage. Aziridine is corrosive to the eyes and skin, causes skin burns and serious eye damage. Acute experiments on animals show the substance is very toxic by inhalation, skin contact and if swal-lowed. Its vapours cause strong irritation of hte respiratory tract and eyes (extreme respiratory difficulty after exposure at concentrations over 17.6 mg/m3 in rats). Daily inhalation of 10 mg/m3, 4 h/day for 1.5 months caused reduced weight gain, leucopenia, reticulocytosis, catarrhal bronchitis, a reduction of lym-phoid elements in the lymph glands, degenerative changes in the liver and testes of exposed rats and a reprotoxic effect. Aziridine is carcinogenic to animals. Oral exposure causes liver and lung cancer in mice. Local (in site of injection) neoplasms were observed in rats. In the European Union aziridine is classified as a substance which should be regarded as carcinogenic to human (Carc. Cat. 2), the same classification is obligatory in Poland. IARC concluded that aziridine is possibly carcinogenic to humans (group 2B). Aziridine is classified as a confirmed animal carcinogen with unknown relevance to humans (A3) by ACGIH, it is also considered a carcinogen by NIOSH, NTP and in Germany (category 2). Aziridine is carcinogenic to animals, however there are no data about carcinogenic effects to humans chronically exposed to it, and the relevance of animal data to humans is unknown. Aziridine is a highly reactive direct alkylating agent with strong mutagenic and genotoxic activity. In the European Union aziridine is classified as a substance which should be regarded as mutagenic to human (Muta. Cat. 2), the same classification is obligatory in Poland. On the basis of the irritating and systemic activity of aziridine, a maximum admissible concentration of 0.62 mg/m3 was proposed. Additional notations for aziridine is Carc. Cat. 2, a substance which should be regarded as carcinogenic to human; Muta. Cat. 2, a substance which should be regarded as mutagenic to human; Sk, a substance which can be absorbed through the skin; and C, a corrosive substance.
PL
Cisplatyna jest cytostatykiem stosowanym w terapii raka: jądra, jajnika, pęcherza moczowego, kolczystokomórkowego głowy i szyi, drobnokomórkowego i niedrobnokomórkowego płuca oraz szyjki macicy. Dla personelu medycznego jest dostępna w postaci ampułek 10 lub 50 mg z koncentratem do sporządzania roztworu do infuzji (1 mg cisplatyny/ml). Narażenie zawodowe na cisplatynę może wystąpić podczas produkcji oraz w czasie stosowania leku na oddziałach szpitalnych. Narażenie przy produkcji stanowi mniejszy problem, ponieważ dotyczy stosunkowo wąskiej grupy pracowników firm farmaceutycznych, podlegających wymogom dobrej praktyki wytwarzania i restrykcyjnej kontroli narażenia. Znacznie większą grupę osób zawodowo narażonych na cisplatynę stanowią pracownicy służby zdrowia (pielęgniarki, lekarze, farmaceuci, salowe, osoby sprzątające, pracownicy pralni) opiekujący się i mający kontakt z leczonym pacjentem. Źródłem narażenia dla personelu medycznego i pomocniczego może być przygotowywany i podawany lek oraz wydaliny i wydzieliny chorych. Głównymi drogami narażenia zawodowego w trakcie procesów produkcji cisplatyny są układ oddechowy i skóra. W warunkach szpitalnych to skóra stanowi główną drogę narażenia, chociaż nie można wykluczyć również narażenia inhalacyjnego, głównie na aerozole cisplatyny. Największe stężenia cisplatyny w powietrzu środowiska pracy wynosiły < 5,3 ng/m3, natomiast na różnych powierzchniach pomieszczeń aptecznych i szpitalnych, sprzęcie zabiegowym i rękawicach, stężenia nie przekraczały 110 ng/cm2. Brak jest danych ilościowych dotyczących wchłaniania cisplatyny przez skórę lub przez drogi oddechowe u ludzi, wiadomo natomiast, że związek może wchłaniać się tymi drogami, o czym świadczą wyniki badań prowadzonych wśród farmaceutów i personelu medycznego, u których stwierdzano istotnie większe stężenia platyny (Pt) w moczu w porównaniu z grupą kontrolną. Informacje dotyczące skutków zdrowotnych narażenia zawodowego na cisplatynę są bardzo nieliczne. Opisano jedynie przypadki alergii zawodowej objawiającej się pokrzywką. Dane dostępne w piśmiennictwie dotyczą głównie działań niepożądanych u pacjentów leczonych cisplatyną. Najczęściej zgłaszane działania niepożądane cisplatyny to zaburzenia: czynności nerek, hematologiczne, słuchu, żołądkowo-jelitowe oraz neuropatie. U około 1/3 pacjentów już po podaniu pojedynczej dawki cisplatyny (50 mg/m2) obserwowano skutki działania toksycznego związku na: nerki, szpik kostny i słuch. Skutki działania nefrotoksycznego, ototoksycznego i neurotoksycznego cisplatyny mogą mieć charakter długotrwały i nieprzemijający. W badaniach toksyczności cisplatyny na zwierzętach związek podawano wyłącznie dootrzewnowo lub dożylnie. Cisplatyna działała głównie na nerki zwierząt, wywołując zmiany biochemiczne (m.in. zwiększenie stężenia kreatyniny i azotu mocznikowego w surowicy), a w obrazie histopatologicznym martwicę w proksymalnych kanalikach nerkowych. Ponadto obserwowano zmiany aktywności enzymów wątrobowych, liczne ogniska zapalne oraz martwice wątroby, a także nieprawidłowości w rozmieszczeniu komórek wydzielniczych i aktywności enzymów bariery jelitowej oraz zmiany histopatologiczne w jelicie cienkim, które zaburzały procesy trawienne i prowadziły do zaburzenia łaknienia u zwierząt. Cisplatyna działała również ototoksycznie, prowadząc do utraty słuchu u gryzoni. Obserwowano ponadto zmiany w obrazie krwi i zaburzenia w obrębie układu krwiotwórczego. U narażanych zwierząt wystąpiły: leukopenia, zmniejszona liczba neutrofili, limfocytów oraz płytek, a także zahamowanie czynności szpiku kostnego. W testach neurobehawioralnych u zwierząt cisplatyna wywoływała zmniejszenie aktywności ruchowej. Cisplatyna działała mutagennie w testach na bakteriach oraz na komórkach ssaków, w tym na ludzkich limfocytach. Wywoływała wzrost częstości wymian chromatyd siostrzanych i aberracje chromosomowe. Odnotowano dodatnie wyniki testu kometowego oraz mikrojądrowego. Jednym z opisywanych działań ubocznych terapii cisplatyną jest jej działanie rakotwórcze. W literaturze opisano przypadki ostrej białaczki nielimfoblastycznej u pacjentek leczonych wyłącznie cisplatyną i karboplatyną 6 lat po zakończeniu chemioterapii. W dostępnym piśmiennictwie brak jest danych dotyczących przypadków zachorowania na nowotwory pracowników zawodowo narażonych wyłącznie na cisplatynę. Istniejące doniesienia dotyczą jednoczesnego narażenia na różne cytostatyki. U myszy i szczurów po podaniu dootrzewnowym cisplatyny wykazano jej działanie rakotwórcze. U myszy narażanych na cisplatynę obserwowano zwiększoną liczbę i częstość występowania gruczolaków płuc. Po narażeniu zwierząt na cisplatynę dootrzewnowo, a ponadto na olej krotonowy naskórnie, odnotowano brodawczaki skóry. U narażanych szczurów cisplatyna indukowała białaczki. W IARC zaklasyfikowano cisplatynę jako substancję prawdopodobnie rakotwórczą dla ludzi (grupa 2.A). W DECOS uznano ją za kancerogen genotoksyczny, również NTP klasyfikuje ją jako substancję potencjalnie rakotwórczą dla ludzi. Pomimo że cisplatyna nie została urzędowo zaklasyfikowana w UE i brak jej klasyfikacji zharmonizowanej, większość producentów klasyfikuje ten związek jako działający rakotwórczo kategorii zagrożenia 1.B. Nie ma w dostępnym piśmiennictwie danych o przypadkach klinicznych i wynikach badań epidemiologicznych dotyczących wpływu cisplatyny na płód i rozrodczość wskutek narażenia zawodowego na ten związek. Na podstawie opisanych przypadków ciężarnych leczonych cisplatyną wiadomo, że związek ten przenika przez łożysko oraz do mleka matki. U dzieci 20% pacjentek leczonych cisplatyną w pierwszym trymestrze ciąży oraz u 1% dzieci pacjentek leczonych w drugim i/lub trzecim trymestrze ciąży wystąpiły poważne wady rozwojowe. U mężczyzn przewlekłe podawanie cisplatyny wywoływało odwracalną azoospermię oraz dysfunkcję komórek Leydig’a. Spośród 61 kobiet chorych na raka jajnika poddanych zachowawczemu zabiegowi chirurgicznemu i chemioterapii cisplatyną w wieku rozrodczym 47% urodziło dzieci w okresie po terapii, a 87% starających się zaszło w ciążę. W badaniach na zwierzętach laboratoryjnych cisplatyna działała wysoce embriotoksycznie. Rzadziej obserwowano zmiany teratogenne. Cisplatyna wpływała także na aktywność jajników. Na podstawie dostępnych w piśmiennictwie danych dotyczących toksyczności cisplatyny u ludzi i zwierząt nie jest możliwe ustalenie zależności dawka-odpowiedź. Z analizy klasyfikacji leków stosowanych przez: ASHP, NIOSH, IACP, IPCS wynika, że wartość najwyższego dopuszczalnego stężenia (NDS) cisplatyny w środowisku pracy powinna mieścić się w granicach 0,001 ÷ 0,01 mg/m3. Biorąc pod uwagę ilościową ocenę rakotwórczości cisplatyny wykonaną przez ekspertów DECOS oraz akceptowalny poziom ryzyka zawodowego ustalony przez Międzyresortową Komisję ds. NDS i NDN (10-3 ÷ 10-4) dla kancerogenów, dopuszczalne stężenia cisplatyny w środowisku pracy powinny mieścić się w zakresie 0,005 ÷ 0,0005 mg/m3. W większości państw (w: USA, Belgii, Szwajcarii i na Węgrzech) ustalono wartości dopuszczalnych stężeń dla tego związku na poziomie 0,002 mg/m3. Zaproponowano wartość NDS cisplatyny na poziomie 0,002 mg/m3, a ponadto oznakowanie: Carc. 1B – substancja rakotwórcza kategorii zagrożenia 1.B; „Ft” – substancja działająca szkodliwie na płód oraz „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Brak jest podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB) dla cisplatyny.
EN
Cisplatin is a cytostatic used in the treatment of testicular, ovarian, cervix and bladder cancers, squamous cell carcinoma of a head and a neck, small cell and non-small cell lung cancer. For medical staff, it is available in ampoules of 10 or 50 mg with a concentrate for solution for infusion (1 mg cisplatin/ml). Occupational exposure to cisplatin may occur during production and drug use in hospital wards. Exposure during production is a minor problem because it concerns a relatively narrow group of employees of pharmaceutical companies, that are subjected to requirements of good manufacturing practice and restrictive exposure control. A much larger group of workers exposed to cisplatin are health professionals (nurses, doctors, pharmacists, cleaning service, laundry workers) who care for and have contact with treated patients. The source of exposure for medical and auxiliary personnel may be preparation and administration of drug and excretions and secretions of patients. The main routes of occupational exposure during cisplatin production processes are respiratory and skin. In hospitals, skin is the main route of exposure, although inhalation exposure cannot be excluded, mainly on cisplatin aerosols. The highest concentrations of cisplatin in the occupational environment air were < 5.3 ng/m3 , while on different surfaces of pharmacy and hospital rooms, surgical equipment and gloves, concentrations did not exceed 110 ng/cm2 . There are no quantitative data on the absorption of cisplatin through the skin or through the respiratory tract in humans, but it is known that the compound can absorb these routes, as demonstrated by studies conducted among pharmacists and medical personnel with significantly higher concentrations of platinum (Pt) in urine compared to the control group. There is little information on the health effects of occupational exposure to cisplatin. Only cases of occupational allergy manifesting by urticaria have been described. The data available in the literature refer mainly to adverse reactions in patients treated with cisplatin. The most commonly reported adverse effects of cisplatin are renal, haematological, hearing, gastrointestinal and neuropathic disorders. In about one third of patients, after the administration of a single dose of cisplatin (50 mg/m2 ), the toxic effects of the compound were observed on kidneys, bone marrow and hearing. The nephrotoxic, ototoxic and neurotoxic effects of cisplatin can be long-term and permanent. In animal toxicity studies with cisplatin, the compound was administered intraperitoneally or intravenously. Cisplatin affects mainly kidneys of animals, causing biochemical changes (including an increase creatinine and urea nitrogen levels in serum), and histopathological abnormalities, necrosis in the proximal renal tubules. Moreover, there were changes in liver enzymes activities, numerous inflammation and liver necrosis, and disorders in secretory cell distribution, intestinal barrier enzymes activities, and histopathological changes in the small intestine, which disturbed digestive processes and led to appetite disturbances in animals. Cisplatin is also ototoxic, leading to hearing loss in rodents. Changes in the blood parameters and disorders in the hematopoietic system have also been observed. Leukopenia, decreased number of neutrophils, lymphocytes and platelets, and bone marrow suppression occurred in exposed animals. In neurobehavioral tests in animals, cisplatin caused a decrease in physical activity. Cisplatin was mutagenic in tests on bacteria and on mammalian cells, including human lymphocytes. It evoked an increase in the frequency of sister chromatid exchanges and chromosomal aberrations. There were positive comet and micronucleus test results. One of the reported side effects of cisplatin therapy is its carcinogenic effect. The literature describes cases of acute non- -lymphoblastic leukemia in patients treated with cisplatin only and carboplatin 6 years after chemotherapy. In the available literature, there are no data on the incidence of cancer of workers professionally exposed only to cisplatin. The existing reports concern simultaneous exposure to various cytostatics. Cisplatin has been shown to be carcinogenic to mice and rats after intraperitoneal administration. In mice exposed to cisplatin an increased number and incidence of lung adenomas were observed. After exposure of animals to cisplatin intraperitoneally, and additionally to epidermal croton oil, skin papillomas were noticed. In the exposed rats, cisplatin induced leukemia. The cisplatin was classified by IARC experts as probably carcinogenic to humans (Group 2A). In DECOS, it was considered as genotoxic carcinogen, NTP also classifies it as a potentially carcinogenic substance for humans. Although cisplatin has not been officially classified in the EU and there is lack of its harmonized classification, most manufacturers classify this compound as a carcinogen 1B category. There is no data available in the literature on clinical cases and results of epidemiological studies on the effect of cisplatin on the fetus and reproduction due to occupational exposure to this compound. Based on the described cases of pregnant patients treated with cisplatin, this compound is known to cross the placenta and into breast milk. Serious malformations were observed in 20% of children of patients treated with cisplatin in the first trimester of pregnancy and 1% of children in patients treated in the second and/or third trimester of pregnancy. In men, chronic administration of cisplatin induced reversible azoospermia and Leydig cell dysfunction. Of the 61 women with ovarian cancer undergoing conservative surgery and cisplatin chemotherapy at reproductive age, 47% gave birth to children after treatment, and 87% of those trying to get pregnant, became pregnant. In laboratory animal studies, cisplatin was highly embryotoxic. Teratogenic changes were less frequently observed. Cisplatin also affected ovarian activity. Based on the cisplatin toxicity data available in humans and animals, it is not possible to determine the dose-response relationship. The analysis of the classification of drugs used by ASHP, NIOSH, IACP and IPCS shows that the cisplatin should have a permissible occupational exposure value within 0.001–0.01 mg/m3 . Considering the quantitative carcinogenicity assessment of cisplatin performed by DECOS experts and the acceptable level of occupational risk set by the Interdepartmental Commission on MAC (10-3–10-4 ) for carcinogens, acceptable concentrations of cisplatin in the work environment should be within 0.005 mg/m3–0.0005 mg/m3 . In most countries (in the USA, Belgium, Switzerland and Hungary), the occupational exposure limits for this compound were set at 0.002 mg/m3 . The maximum admissible concentration (MAC) value for cisplatin was proposed at 0.002 mg/m3 . It was proposed to label the substance as “Carc. 1B” – carcinogenic substance of category 1B, “Ft” – toxic to the fetus and “skin”, because absorption through the skin may be as important as inhalation. There are no substantive basis to establish the value of the short- -term (STEL) and permissible concentrations in biological material (DSB) for cisplatin.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.