Let D be a smooth bounded pseudoconvex domain in ℂⁿ of finite type. We prove an estimate on the pluricomplex Green function $𝒢_D(z,w)$ of D that gives quantitative information on how fast the Green function vanishes if the pole w approaches the boundary. Also the Hölder continuity of the Green function is discussed.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study the class of smooth bounded weakly pseudoconvex domains D ⊂ ℂⁿ whose boundary points are of finite type (in the sense of J. Kohn) and whose Levi form has at most one degenerate eigenvalue at each boundary point, and prove effective estimates on the invariant distance of Carathéodory. This completes the author's investigations on invariant differential metrics of Carathéodory, Bergman, and Kobayashi in the corank one situation and on invariant distances on pseudoconvex finite type domains in dimension two.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.