CONTENTS §1. Introduction.................................................................................................................5 §2. Basic properties of δ-tempered holomorphic functions...............................................8 §3. Holomorphic continuation and holomorphic retractions.............................................20 §4. Continuation from regular neighbourhoods...............................................................32 §5. Continuation from δ-regular submanifolds; Main Theorem........................................35 §6. Holomorphic retractions and pseudoinverse matrices; proof of Main Theorem.........39 References.....................................................................................................................49
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let D,G ⊂ ℂ be domains, let A ⊂ D, B ⊂ G be locally regular sets, and let X:= (D×B)∪(A×G). Assume that A is a Borel set. Let M be a proper analytic subset of an open neighborhood of X. Then there exists a pure 1-dimensional analytic subset M̂ of the envelope of holomorphy X̂ of X such that any function separately holomorphic on X∖M extends to a holomorphic function on X̂ ∖M̂. The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], and [Sic 2000].
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let $G ⊂ ℂ^n$ and $B ⊂ ℂ^m$ be domains and let Φ:G → B be a surjective holomorphic mapping. We characterize some cases in which invariant functions and pseudometrics on G can be effectively expressed in terms of the corresponding functions and pseudometrics on B.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We present a version of the identity principle for analytic sets, which shows that the extension theorem for separately holomorphic functions with analytic singularities follows from the case of pluripolar singularities.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let X be a Riemann domain over $ℂ^{k} × ℂ^{ℓ}$. If X is a domain of holomorphy with respect to a family ℱ ⊂𝓞(X), then there exists a pluripolar set $P ⊂ ℂ^{k}$ such that every slice $X_{a}$ of X with a∉ P is a region of holomorphy with respect to the family ${f|_{X_{a}}: f ∈ ℱ}$.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let $D_j ⊂ ℂ^{k_j}$ be a pseudoconvex domain and let $A_j ⊂ D_j$ be a locally pluriregular set, j = 1,...,N. Put $X: = ⋃_{j=1}^N A₁ ×. .. × A_{j-1} × D_j × A_{j+1} ×. .. × A_N ⊂ ℂ^{k₁+...+k_N}$. Let U be an open connected neighborhood of X and let M ⊊ U be an analytic subset. Then there exists an analytic subset M̂ of the "envelope of holomorphy" X̂ of X with M̂ ∩ X ⊂ M such that for every function f separately holomorphic on X∖M there exists an f̂ holomorphic on X̂∖M̂ with $f̂|_{X∖M} = f$. The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001].
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove (Theorem 1.2) that the category of generalized holomorphically contractible families (Definition 1.1) has maximal and minimal objects. Moreover, we present basic properties of these extremal families.