Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A Remark on a Paper of Crachiola and Makar-Limanov
100%
|
|
tom 59
|
nr 3
203-206
EN
A. Crachiola and L. Makar-Limanov [J. Algebra 284 (2005)] showed the following: if X is an affine curve which is not isomorphic to the affine line $𝔸¹_k$, then ML(X×Y) = k[X]⊗ ML(Y) for every affine variety Y, where k is an algebraically closed field. In this note we give a simple geometric proof of a more general fact that this property holds for every affine variety X whose set of regular points is not k-uniruled.
2
Content available remote On the stable equivalence problem for k[x,y]
100%
EN
L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring k[x,y] when k is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field k.
3
Content available remote Non-uniruledness and the cancellation problem (II)
100%
|
|
nr 1
41-48
EN
We study the following cancellation problem over an algebraically closed field 𝕂 of characteristic zero. Let X, Y be affine varieties such that $X × 𝕂^m ≅ Y × 𝕂^m$ for some m. Assume that X is non-uniruled at infinity. Does it follow that X ≅ Y? We prove a result implying the affirmative answer in case X is either unirational or an algebraic line bundle. However, the general answer is negative and we give as a counterexample some affine surfaces.
4
Content available remote Non-uniruledness and the cancellation problem
100%
|
2005
|
tom 87
|
nr 1
93-98
EN
Using the notion of uniruledness we indicate a class of algebraic varieties which have a stronger version of the cancellation property. Moreover, we give an affirmative solution to the stable equivalence problem for non-uniruled hypersurfaces.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.