Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The goal of our work was an initial preprocessing of dermoscopic images towards accurate lesion border detection. Four algorithms were proposed and analyzed: MS – algorithm using mean shift clustering, HE – algorithm using histogram equalization, TTH – algorithm using the top-hat transform, PCA – algorithm using principal component analysis. Those algorithms were tested on PH2 images database that contains 200 dermoscopic images, each with a mask of the lesion. Those algorithms were optimized using lesion mask from database and Jaccard index as a measure of similarity of both sets. Simple statistical analysis of indexes was used to compare proposed algorithms in term of their accuracy.
PL
W artykule poruszono problem wstępnego przetwarzania obrazów dermatoskopowych w celu znalezienia konturu znamienia. Zaproponowano i porównano cztery algorytmy: MS – wykorzystujący klasteryzację ‘mean shift’, HE – wykorzystujący wyrównywanie histogramu, TTH – wykorzystujący transformację ‘top-hat’, PCA – wykorzystujący metodę analizy głównych składowych. Algorytmy przetestowano z wykorzystaniem obrazów z bazy PH2, zawierającej 200 obrazów wraz z obrysem ręcznym, a ich parametry dobrano optymalizując indeks Jaccarda. Proste statystyki wyników pozwoliły na porównanie proponowanych algorytmów.
2
Content available remote Evaluation of SPECT-CT image fusion quality control
86%
EN
Co-registration of different types of studies into one multimodal image is a very powerful tool which provides more (complementary) information than both studies analyzed separately. The aim of this paper is to demonstrate the importance and to provide a measure of quality control in SPECT-CT studies. The resuIt of image fusion has a diagnostic value only when precision of co-registration is known and falls below an acceptable level. It is very important to evaluate an error of each fusion result. This parameter, while unknown, may lead to incorrect diagnostic decisions, especially when none of the anatomical structures are visualized, like in case of imaging iodine-131 patients.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.