Consider the fourth order quasilinear difference equation of the form where {pn} is a positive sequence and {qn} is a sequence of non-negative reals, a and ,3 are ratios of odd positive integers. We obtain some new sufficient conditions for the oscillation of all solutions of equation (*). Examples are inserted to illustrate the importance of our results.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we present some oscillation criteria for second order nonlinear delay difference equation with non-positive neutral term of the form ∆(an (∆zn )α )+qn f(xn-σ) )=0, n>no >0, where zn - xn - pn xn-r, and α is a ratio of odd positive integers. Examples are provided to illustrate the results. The results obtained in this paper improve and complement to some of the existing results.
In this paper, we present some new sufficient conditions for oscillation of even order nonlinear neutral difference equation of the form [formula] where m ≥ 2 is an even integer, using arithmetic-geometric mean inequality. Examples are provided to illustrate the main results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.