Let M be a d × d real contracting matrix. We consider the self-affine iterated function system {Mv-u, Mv+u}, where u is a cyclic vector. Our main result is as follows: if $|det M| ≥ 2^{-1/d}$, then the attractor $A_{M}$ has non-empty interior. We also consider the set $𝒰_{M}$ of points in $A_{M}$ which have a unique address. We show that unless M belongs to a very special (non-generic) class, the Hausdorff dimension of $𝒰_{M}$ is positive. For this special class the full description of $𝒰_{M}$ is given as well. This paper continues our work begun in two previous papers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.