We give a common generalization of the Walsh system, Vilenkin system, the character system of the group of 2-adic (m-adic) integers, the product system of normalized coordinate functions for continuous irreducible unitary representations of the coordinate groups of noncommutative Vilenkin groups, the UDMD product systems (defined by F. Schipp) and some other systems. We prove that for integrable functions σₙf → f (n → ∞) a.e., where σₙf is the nth (C,1) mean of f. (For the character system of the group of m-adic integers, this proves a more than 20 years old conjecture of M. H. Taibleson [24, p. 114].) Define the maximal operator σ*f : = supₙ|σₙf|. We prove that σ* is of type (p,p) for all 1< p ≤ ∞ and of weak type (1,1). Moreover, $||σ*f||₁ ≤ c||f||_{H}$, where H is the Hardy space.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove the almost everywhere convergence of the Marcinkiewicz means of integrable functions σₙf → f for every f ∈ L¹(I²), where I is the group of 2-adic integers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.