Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote C(K) spaces which cannot be uniformly embedded into c₀(Γ)
100%
|
|
nr 3
245-254
EN
We give two examples of scattered compact spaces K such that C(K) is not uniformly homeomorphic to any subset of c₀(Γ) for any set Γ. The first one is [0,ω₁] and hence it has the smallest possible cardinality, the other one has the smallest possible height ω₀ + 1.
2
Content available remote Selections and suborderability
88%
EN
We extend van Mill-Wattel's results and show that each countably compact completely regular space with a continuous selection on couples is suborderable. The result extends also to pseudocompact spaces if they are either scattered, first countable, or connected. An infinite pseudocompact topological group with such a continuous selection is homeomorphic to the Cantor set. A zero-selection is a selection on the hyperspace of closed sets which chooses always an isolated point of a set. Extending Fujii-Nogura results, we show that an almost compact space with a continuous zero-selection is homeomorphic to some ordinal space, and a (locally compact) pseudocompact space with a continuous zero-selection is an (open) subspace of some space of ordinals. Under the Diamond Principle, we construct several counterexamples, e.g. a locally compact locally countable monotonically normal space with a continuous zero-selection which is not suborderable.
3
Content available remote On complexity of metric spaces
63%
|
|
nr 2
133-142
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.