The importance of second phase particles has received less attention for metal-matrix composites (MMCs) processed by one of the most common severe plastic deformation (SPD) techniques known as accumulative roll bonding (ARB). Accordingly, the present work has been dedicated to the processing and evaluating the effects of ARB on the tensile properties, work-hardening behavior, distribution of particles, and fracture surface appearance of a typical Al-B4C particulate composite. It was found that bonding between the reinforcement and the matrix is not good enough to grant the effective strengthening effect. As a result, both tensile strength and ductility of ARB processed aluminum were higher than those of ARB processed Al-B4C composite. Moreover, by increasing ARB pass number, the tensile strength and total elongation of composites increased, where the latter was related to the enhancement of particle distribution, improvement of the particle/matrix interface, and enhancement of the work-hardening behavior. It was revealed that particle distribution affects the ductility but its effect on the tensile strength is less pronounced.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.