We study bialgebra structures on quiver coalgebras and monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed monoidal categories.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In [2], Fuchs and Viljoen introduced and classified the $B^*$-modules for a valuation ring R: an R-module M is a $B^*$-module if $Ext^1_R(M,X)=0$ for each divisible module X and each torsion module X with bounded order. The concept of a $B^*$-module was extended to the setting of a torsion theory over an associative ring in [14]. In the present paper, we use categorical methods to investigate the $B^*$-modules for a group graded ring. Our most complete result (Theorem 4.10) characterizes $B^*$-modules for a strongly graded ring R over a finite group G with $|G|^{−1} \in R$. Motivated by the results of [8], [9], [10] and [15], we also study the condition that every non-singular R-module is a $B^∗$-module with respect to the Goldie torsion theory; for the case in which R is a strongly graded ring over a group, extensive information is obtained for group rings of abelian, solvable and polycyclic-by-finite groups.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.