Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Multi-path convolutional neural network in fundus segmentation of blood vessels
100%
EN
There is a close correlation between retinal vascular status and physical diseases such as eye lesions. Retinal fundus images are an important basis for diagnosing diseases such as diabetes, glaucoma, hypertension, coronary heart disease, etc. Because the thickness of the retinal blood vessels is different, the minimum diameter is only one or two pixels wide, so obtaining accurate measurement results becomes critical and challenging. In this paper, we propose a new method of retinal blood vessel segmentation that is based on a multi-path convolutional neural network, which can be used for computer-based clinical medical image analysis. First, a low-frequency image characterizing the overall characteristics of the retinal blood vessel image and a high-frequency image characterizing the local detailed features are respectively obtained by using a Gaussian low-pass filter and a Gaussian high-pass filter. Then a feature extraction path is constructed for the characteristics of the low- and high-frequency images, respectively. Finally, according to the response results of the low-frequency feature extraction path and the high-frequency feature extraction path, the whole blood vessel perception and local feature information fusion coding are realized, and the final blood vessel segmentation map is obtained. The performance of this method is evaluated and tested by DRIVE and CHASE_DB1. In the experimental results of the DRIVE database, the evaluation indexes accuracy (Acc), sensitivity (SE), and specificity (SP) are 0.9580, 0.8639, and 0.9665, respectively, and the evaluation indexes Acc, SE, and SP of the CHASE_DB1 database are 0.9601, 0.8778, and 0.9680, respectively. In addition, the method proposed in this paper could effectively suppress noise, ensure continuity after blood vessel segmentation, and provide a feasible new idea for intelligent visual perception of medical images.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.